These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7130898)

  • 1. The neuromuscular basis of rhythmic struggling movements in embryos of Xenopus laevis.
    Kahn JA; Roberts A
    J Exp Biol; 1982 Aug; 99():197-205. PubMed ID: 7130898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The central nervous origin of the swimming motor pattern in embryos of Xenopus laevis.
    Kahn JA; Roberts A
    J Exp Biol; 1982 Aug; 99():185-96. PubMed ID: 7130897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triggering and gating of motor responses by sensory stimulation: behavioural selection in Xenopus embryos.
    Soffe SR
    Proc Biol Sci; 1991 Dec; 246(1317):197-203. PubMed ID: 1686085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neuromuscular basis of swimming movements in embryos of the amphibian Xenopus laevis.
    Kahn JA; Roberts A; Kashin SM
    J Exp Biol; 1982 Aug; 99():175-84. PubMed ID: 7130896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrally generated rhythmic and non-rhythmic behavioural responses in Rana temporaria embryos.
    Soffe SR
    J Exp Biol; 1991 Mar; 156():81-99. PubMed ID: 2051140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord.
    Soffe SR
    J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation.
    van Mier P; Armstrong J; Roberts A
    Neuroscience; 1989; 32(1):113-26. PubMed ID: 2586744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transitions between two different motor patterns in Xenopus embryos.
    Green CS; Soffe SR
    J Comp Physiol A; 1996 Feb; 178(2):279-91. PubMed ID: 8592307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish.
    Fetcho JR; Svoboda KR
    J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and survival of thoracic motoneurons and hindlimb musculature following transplantation of the thoracic neural tube to the lumbar region in the chick embryo: functional aspects.
    O'Brien MK; Landmesser L; Oppenheim RW
    J Neurobiol; 1990 Mar; 21(2):341-55. PubMed ID: 2307978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of synaptic drive to ventrally located spinal neurones in Rana temporaria embryos during rhythmic and non-rhythmic motor responses.
    Soffe SR; Sillar KT
    J Exp Biol; 1991 Mar; 156():101-18. PubMed ID: 2051128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor patterns for two distinct rhythmic behaviors evoked by excitatory amino acid agonists in the Xenopus embryo spinal cord.
    Soffe SR
    J Neurophysiol; 1996 May; 75(5):1815-25. PubMed ID: 8734582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of a non-rhythmic motor pattern by nitric oxide in hatchling Rana temporaria embryos.
    McLean DL; McDearmid JR; Sillar KT
    J Exp Biol; 2001 Apr; 204(Pt 7):1307-17. PubMed ID: 11249840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study.
    Kullberg RW; Lentz TL; Cohen MW
    Dev Biol; 1977 Oct; 60(1):101-29. PubMed ID: 902924
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of rhythmic movements by purinergic neurotransmitters in frog embryos.
    Dale N; Gilday D
    Nature; 1996 Sep; 383(6597):259-63. PubMed ID: 8805702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of muscle activity in the differentiation of neuromuscular junctions in slow and fast chick muscles.
    Srihari T; Vrbová G
    J Neurocytol; 1978 Oct; 7(5):529-40. PubMed ID: 722314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfiguration of a vertebrate motor network: specific neuron recruitment and context-dependent synaptic plasticity.
    Li WC; Sautois B; Roberts A; Soffe SR
    J Neurosci; 2007 Nov; 27(45):12267-76. PubMed ID: 17989292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction.
    Godfrey EW; Roe J; Heathcote RD
    Dev Biol; 1999 Jan; 205(1):22-32. PubMed ID: 9882495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stopping response of Xenopus laevis embryos: behaviour, development and physiology.
    Boothby KM; Roberts A
    J Comp Physiol A; 1992 Feb; 170(2):171-80. PubMed ID: 1583603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.