These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7131050)

  • 1. Comparison of movement-related activity in two cortical motor areas of primates.
    Tanji J; Kurata K
    J Neurophysiol; 1982 Sep; 48(3):633-53. PubMed ID: 7131050
    [No Abstract]   [Full Text] [Related]  

  • 2. Distribution of neurons related to a hindlimb as opposed to forelimb movement in the monkey premotor cortex.
    Kurata K; Okano K; Tanji J
    Exp Brain Res; 1985; 60(1):188-91. PubMed ID: 4043276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of activity of individual pyramidal tract neurons during balancing, locomotion, and scratching.
    Beloozerova IN; Sirota MG; Orlovsky GN; Deliagina TG
    Behav Brain Res; 2006 Apr; 169(1):98-110. PubMed ID: 16445992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the pyramidal tract in the production of cortically evoked movements in the brush-tailed possum(Trichosurus vulpecula).
    Hore J; Porter R
    Brain Res; 1971 Jul; 30(1):232-4. PubMed ID: 5124461
    [No Abstract]   [Full Text] [Related]  

  • 5. Microstimulation of the supplementary motor area (SMA) in the awake monkey.
    Macpherson JM; Marangoz C; Miles TS; Wiesendanger M
    Exp Brain Res; 1982; 45(3):410-6. PubMed ID: 7067775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting properties of pyramidal tract neurons located in the precentral or postcentral areas and of corticorubral neurons in the behaving monkey.
    Fromm C
    Adv Neurol; 1983; 39():329-45. PubMed ID: 6660100
    [No Abstract]   [Full Text] [Related]  

  • 7. Relationship between input and output of cells in motor and somatosensory cortices of the chronic awake rat. A study using glass micropipettes.
    Sapienza S; Talbi B; Jacquemin J; Albe-Fessard D
    Exp Brain Res; 1981; 43(1):47-56. PubMed ID: 6265260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swimming as a method for assessing motor cortex integrity in the rat.
    Gisel E; Gruenthal M; Finger S
    Brain Res; 1982 May; 239(2):649-54. PubMed ID: 7093708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles.
    Humphrey DR; Reed DJ
    Adv Neurol; 1983; 39():347-72. PubMed ID: 6419553
    [No Abstract]   [Full Text] [Related]  

  • 10. Direction-specific activities of dorsolateral prefrontal and motor cortex pyramidal tract neurons during visual tracking.
    Kubota K; Funahashi S
    J Neurophysiol; 1982 Mar; 47(3):362-76. PubMed ID: 7069449
    [No Abstract]   [Full Text] [Related]  

  • 11. Corticospinal neurons with a special role in precision grip.
    Muir RB; Lemon RN
    Brain Res; 1983 Feb; 261(2):312-6. PubMed ID: 6831213
    [No Abstract]   [Full Text] [Related]  

  • 12. Functional reorganization of the rat motor cortex following motor skill learning.
    Kleim JA; Barbay S; Nudo RJ
    J Neurophysiol; 1998 Dec; 80(6):3321-5. PubMed ID: 9862925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional organization of the projection from area 2 to area 4gamma in the cat.
    Caria MA; Kaneko T; Kimura A; Asanuma H
    J Neurophysiol; 1997 Jun; 77(6):3107-14. PubMed ID: 9212260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limits on recovery in the corticospinal tract of the rat: partial lesions impair skilled reaching and the topographic representation of the forelimb in motor cortex.
    Piecharka DM; Kleim JA; Whishaw IQ
    Brain Res Bull; 2005 Aug; 66(3):203-11. PubMed ID: 16023917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional classes of primate corticomotoneuronal cells and their relation to active force.
    Cheney PD; Fetz EE
    J Neurophysiol; 1980 Oct; 44(4):773-91. PubMed ID: 6253605
    [No Abstract]   [Full Text] [Related]  

  • 16. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.
    Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME
    Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Reflection of somatotopy in the neuronal activity of the rabbit motor cortex].
    Sokolova AA; Kiazimova KM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1973; 23(4):799-806. PubMed ID: 4772247
    [No Abstract]   [Full Text] [Related]  

  • 18. Activity of the motor cortex during scratching.
    Sirota MG; Pavlova GA; Beloozerova IN
    J Neurophysiol; 2006 Feb; 95(2):753-65. PubMed ID: 16236789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory response properties of pyramidal tract neurons in the precentral motor cortex and postcentral gyrus of the rhesus monkey.
    Fromm C; Wise SP; Evarts EV
    Exp Brain Res; 1984; 54(1):177-85. PubMed ID: 6698144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rat somatosensory (SmI) cortex: II. Laminar and columnar organization of noxious and non-noxious inputs.
    Lamour Y; Guilbaud G; Willer JC
    Exp Brain Res; 1983; 49(1):46-54. PubMed ID: 6861936
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.