These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification of the R-G-cone difference signal in the corneal electroretinogram of the primate. Donovan WJ; Baron WS J Opt Soc Am; 1982 Aug; 72(8):1014-20. PubMed ID: 7131114 [No Abstract] [Full Text] [Related]
3. Cone spectral sensitivity and chromatic adaptation as revealed by human flicker-electroretinography. Padmos P; van Norren D Vision Res; 1971 Jan; 11(1):27-42. PubMed ID: 5575852 [No Abstract] [Full Text] [Related]
4. Cone difference signal in foveal local electroretinogram of primate. Baron WS Invest Ophthalmol Vis Sci; 1980 Dec; 19(12):1442-8. PubMed ID: 7440101 [TBL] [Abstract][Full Text] [Related]
5. Primate cone sensitivity to flicker during light and dark adaptation as indicated by the foveal local electroretinogram. Baron WS; Boynton RM; van Norren D Vision Res; 1979; 19(2):109-16. PubMed ID: 106539 [No Abstract] [Full Text] [Related]
7. Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker. Coletta NJ; Adams AJ Vision Res; 1986; 26(8):1241-8. PubMed ID: 3798757 [TBL] [Abstract][Full Text] [Related]
8. Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation. Wisowaty JJ; Boynton RM Vision Res; 1980; 20(11):895-909. PubMed ID: 7210517 [No Abstract] [Full Text] [Related]
9. Cone spectral sensitivity studied with an ERG method. Norren DV Adv Exp Med Biol; 1972; 24(0):207-12. PubMed ID: 4211885 [No Abstract] [Full Text] [Related]
10. Flicker-photometric spectral sensitivity in the presence of chromatic surrounds. Laxar K; Kass D; Wooten BR J Opt Soc Am A; 1984 Aug; 1(8):888-92. PubMed ID: 6470840 [TBL] [Abstract][Full Text] [Related]
11. Opponent and nonopponent contributions to the zebrafish electroretinogram using heterochromatic flicker photometry. Patterson WF; McDowell AL; Hughes A; Bilotta J J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):283-93. PubMed ID: 12012099 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. Lee BB; Martin PR; Valberg A J Physiol; 1989 Jul; 414():223-43. PubMed ID: 2607430 [TBL] [Abstract][Full Text] [Related]
13. Two-band model of heterochromatic flicker. Kelly DH; van Norren D J Opt Soc Am; 1977 Aug; 67(8):1081-91. PubMed ID: 894381 [TBL] [Abstract][Full Text] [Related]
14. Spatial properties of rod-cone interactions in flicker and hue detection. Peachey NS; Alexander KR; Derlacki DJ Vision Res; 1990; 30(8):1205-10. PubMed ID: 2402887 [TBL] [Abstract][Full Text] [Related]
15. A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived. Gur M; Snodderly DM Vision Res; 1997 Feb; 37(4):377-82. PubMed ID: 9156168 [TBL] [Abstract][Full Text] [Related]
16. Spectral sensitivity for flicker and acuity criteria. Ingling CR; Tsou BH J Opt Soc Am A; 1988 Aug; 5(8):1374-8. PubMed ID: 3171733 [TBL] [Abstract][Full Text] [Related]
17. Dark adaptation of separate cone systems studied with psychophysics and electroretinography. Norren DV; Padmos P Vision Res; 1974 Aug; 14(8):677-86. PubMed ID: 4213537 [No Abstract] [Full Text] [Related]
18. Lateral interactions and rod intrusion in color flicker. von GrĂ¼nau MW Vision Res; 1977; 17(8):911-5. PubMed ID: 595396 [No Abstract] [Full Text] [Related]
19. Polymorphism of the middle wavelength cone in two species of South American monkey: Cebus apella and Callicebus moloch. Jacobs GH; Neitz J Vision Res; 1987; 27(8):1263-8. PubMed ID: 3424673 [TBL] [Abstract][Full Text] [Related]