BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7131327)

  • 1. Phenylalanine transport in guinea pig jejunum. A general mechanism for organic solute and sodium cotransport.
    Alvarado F; Lherminier M
    J Physiol (Paris); 1982 Aug; 78(2):131-45. PubMed ID: 7131327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na-dependent transport of S-(1,2-dichlorovinyl)-L-cysteine by renal brush-border membrane vesicles.
    Wright SH; Wunz TM; North J; Stevens JL
    J Pharmacol Exp Ther; 1998 Apr; 285(1):162-9. PubMed ID: 9536006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the co-transport of phenylalanine and sodium ions in the guinea-pig small intestine. II. Sodium fluxes and flux ratios.
    Sepúlveda FV; Robinson JW
    J Physiol (Paris); 1978 Dec; 74(6):575-83. PubMed ID: 745140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the co-transport of sodium and phenylalanine in the guinea-pig samll intestine. III - Influence of harmaline on sodium and phenylalanine fluxes.
    Sepúlveda EV; Robinson JW
    J Physiol (Paris); 1978 Dec; 74(6):585-90. PubMed ID: 745141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the co-transport of phenylalanine and sodium ions in the guinea-pig small intestine. 1. Phenylalanine fluxes.
    Sepúlveda FV; Robinson JW
    J Physiol (Paris); 1978 Dec; 74(6):569-74. PubMed ID: 745139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosterism and Na(+)-D-glucose cotransport kinetics in rabbit jejunal vesicles: compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved.
    Chenu C; Berteloot A
    J Membr Biol; 1993 Mar; 132(2):95-113. PubMed ID: 8496949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Relationship between Na+ and monosaccharide influx across the microvilli membrane depending on the energy state of the intestinal mucosa wall].
    Remke H; Mühle W; Eick B; Müller F
    Acta Biol Med Ger; 1979; 38(8):1123-30. PubMed ID: 532489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled NaCl transport: cotransport or parallel ion exchange?
    Powell DW; Fan CC
    Kroc Found Ser; 1984; 17():13-26. PubMed ID: 6595345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic mechanism of Na+ -glucose cotransport through the rabbit intestinal SGLT1 protein.
    Berteloot A
    J Membr Biol; 2003 Mar; 192(2):89-100. PubMed ID: 12682797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar and amino acid transport in animal cells.
    Hopfer U
    Horiz Biochem Biophys; 1976; 2():106-33. PubMed ID: 6372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush-border vesicles using a fluorescent dye.
    Schell RE; Stevens BR; Wright EM
    J Physiol; 1983 Feb; 335():307-18. PubMed ID: 6875880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of sodium D-glucose cotransport in bovine intestinal brush border vesicles.
    Kaunitz JD; Wright EM
    J Membr Biol; 1984; 79(1):41-51. PubMed ID: 6737463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cl- and membrane potential dependence of amino acid transport across the rat renal brush border membrane.
    Zelikovic I; Budreau-Patters A
    Mol Genet Metab; 1999 Jul; 67(3):236-47. PubMed ID: 10381331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Cl- translocation across small intestinal brush-border membrane. I. Absence of Na+-Cl- cotransport.
    Liedtke CM; Hopfer U
    Am J Physiol; 1982 Mar; 242(3):G263-71. PubMed ID: 7065188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheogenic transport of basic and acidic amino acids across the brush border of Necturus small intestine.
    Armstrong WM; Lyall V; Corcia A; Acevedo M
    Prog Clin Biol Res; 1988; 258():43-65. PubMed ID: 2898150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of L-glutamine transport in equine jejunal brush border membrane vesicles.
    Salloum RM; Duckworth D; Madison JB; Souba WW
    Am J Vet Res; 1993 Jan; 54(1):152-7. PubMed ID: 8427460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High affinity (3)H-phenylalanine uptake by brush border membrane vesicles from whole larvae of Aedes aegypti (AaBBMVw).
    Sterling KM; Okech BA; Xiang MA; Linser PJ; Price DA; Vanekeris L; Becnel JJ; Harvey WR
    J Insect Physiol; 2012 Apr; 58(4):580-9. PubMed ID: 22251673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiamine transport in the brush border membrane vesicles of the guinea-pig jejunum.
    Hayashi K; Yoshida S; Kawasaki T
    Biochim Biophys Acta; 1981 Feb; 641(1):106-13. PubMed ID: 6260179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucocorticoid-induced alterations of renal sulfate transport.
    Sagawa K; Darling IM; Murer H; Morris ME
    J Pharmacol Exp Ther; 2000 Aug; 294(2):658-63. PubMed ID: 10900245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.