BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7131327)

  • 21. Glucocorticoid-induced alterations of renal sulfate transport.
    Sagawa K; Darling IM; Murer H; Morris ME
    J Pharmacol Exp Ther; 2000 Aug; 294(2):658-63. PubMed ID: 10900245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature sensitivity and substrate specificity of two distinct Na+-activated D-glucose transport systems in guinea pig jejunal brush border membrane vesicles.
    Brot-Laroche E; Serrano MA; Delhomme B; Alvarado F
    J Biol Chem; 1986 May; 261(14):6168-76. PubMed ID: 3084480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Na(+)-Cl(-)-K+ cotransport activity in cultured bovine lens epithelial cells and its absence in intact bovine lenses.
    Alvarez LJ; Candia OA
    Exp Eye Res; 1994 Apr; 58(4):479-90. PubMed ID: 7925684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. L-threonine transport in pig jejunal brush border membrane vesicles. Functional characterization of the unique system B in the intestinal epithelium.
    Maenz DD; Patience JF
    J Biol Chem; 1992 Nov; 267(31):22079-86. PubMed ID: 1429560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different temperature sensitivity and cation specificity of two distinct D-glucose/Na+ cotransport systems in the intestinal brush-border membrane.
    Brot-Laroche E; Serrano MA; Delhomme B; Alvarado F
    Ann N Y Acad Sci; 1985; 456():47-50. PubMed ID: 3867313
    [No Abstract]   [Full Text] [Related]  

  • 26. Effect of luminal Na+ on the kinetics of intestinal absorption of sugars in vivo.
    Riñón L; Yanguas E; Ortiz M; Lluch M; Ponz F
    Rev Esp Fisiol; 1986 Jun; 42(2):265-70. PubMed ID: 3749582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles.
    Stevens BR; Ross HJ; Wright EM
    J Membr Biol; 1982; 66(3):213-25. PubMed ID: 6808139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of amino-acid transport systems in guinea-pig intestinal brush-border membrane.
    Satoh O; Kudo Y; Shikata H; Yamada K; Kawasaki T
    Biochim Biophys Acta; 1989 Oct; 985(2):120-6. PubMed ID: 2804099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic asymmetry of renal Na+-L-lactate cotransport. Characteristic parameters and evidence for a ping pong mechanism of the trans-stimulating exchange by pyruvate.
    Mengual R; Schlageter MH; Sudaka P
    J Biol Chem; 1990 Jan; 265(1):292-9. PubMed ID: 2294107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrogenicity of sodium/L-glutamate cotransport in rabbit renal brush-border membranes: a reevaluation.
    Heinz E; Sommerfeld DL; Kinne RK
    Biochim Biophys Acta; 1988 Jan; 937(2):300-8. PubMed ID: 2892532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Quantitative relationship between the monosaccharide induced change in ion transport and the monosaccharide accumulation in the rat jejunum].
    Remke H; Mühle W; Mothes T; Müller F
    Acta Biol Med Ger; 1977; 36(1):7-15. PubMed ID: 878746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A kinetic study of the interactions between amino acids and monosaccharides at the intestinal brush-border membrane.
    Alvarado F; Robinson JW
    J Physiol; 1979 Oct; 295():457-75. PubMed ID: 521961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proline transport by brush-border membrane vesicles of lobster antennal glands.
    Behnke RD; Wong RK; Huse SM; Reshkin SJ; Ahearn GA
    Am J Physiol; 1990 Feb; 258(2 Pt 2):F311-20. PubMed ID: 2155538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Na(+)-dependent proline carrier, of eel intestinal brush-border membrane, sequentially binds proline and then Na+.
    Maffia M; Cassano G; Marcucci D; Vilella S; Storelli C
    Biochim Biophys Acta; 1990 Aug; 1027(1):8-16. PubMed ID: 2397223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary active nutrient transport in membrane vesicles: theoretical basis for use of isotope exchange at equilibrium and contributions to transport mechanisms.
    Hopfer U
    Biochem Soc Symp; 1985; 50():151-68. PubMed ID: 3915868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potassium activation of Na(+)-dependent leucine transport in brush-border membrane vesicles from rat jejunum.
    Sacchi VF; Perego C
    Comp Biochem Physiol A Physiol; 1994 Dec; 109(4):949-56. PubMed ID: 7828034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of kinetic data in transport studies: new insights from kinetic studies of Na(+)-D-glucose cotransport in human intestinal brush-border membrane vesicles using a fast sampling, rapid filtration apparatus.
    Malo C; Berteloot A
    J Membr Biol; 1991 Jun; 122(2):127-41. PubMed ID: 1895338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Na+-independent transport of bipolar and cationic amino acids across the luminal membrane of the small intestine.
    Munck BG; Munck LK
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1060-8. PubMed ID: 9140002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic heterogeneity of Na-D-glucose cotransport in teleost gastrointestinal tract.
    Ahearn GA; Behnke RD; Zonno V; Storelli C
    Am J Physiol; 1992 Nov; 263(5 Pt 2):R1018-23. PubMed ID: 1443217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human placental brush-border membrane Na(+)-pantothenate cotransport.
    Grassl SM
    J Biol Chem; 1992 Nov; 267(32):22902-6. PubMed ID: 1429639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.