These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7131327)

  • 41. Changes in amino acid and glucose transport in brush-border membrane vesicles of hyperglycemic guinea-pig small intestine.
    Satoh O; Koyama S; Yamada K; Kawasaki T
    Biochim Biophys Acta; 1991 Mar; 1063(1):155-61. PubMed ID: 1826612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energetic coupling of Na-glucose cotransport.
    Centelles JJ; Kinne RK; Heinz E
    Biochim Biophys Acta; 1991 Jun; 1065(2):239-49. PubMed ID: 2059656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stoichiometry versus coupling ratio in the cotransport of Na and different neutral amino acids.
    Paterson JY; Sepúlveda FV; Smith MW
    Biochim Biophys Acta; 1980 Dec; 603(2):288-97. PubMed ID: 7459355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of glycylglycine and Na+ at the mucosal border of guinea-pig small intestine. A non-mutual stimulation of transport.
    Himukai M; Kameyama A; Hoshi T
    Biochim Biophys Acta; 1983 Aug; 732(3):659-67. PubMed ID: 6871218
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human placental brush-border membrane Na(+)-biotin cotransport.
    Grassl SM
    J Biol Chem; 1992 Sep; 267(25):17760-5. PubMed ID: 1381353
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rheogenic Cl- conductance and Cl(-)-Cl(-)-exchange activities in guinea pig jejunal basolateral membrane vesicles.
    Touzani K; Caüzac M; Vasseur M; Alvarado F
    Am J Physiol; 1994 Feb; 266(2 Pt 1):G271-81. PubMed ID: 8141301
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ontogeny of Na+/D-glucose cotransport in guinea-pig jejunal vesicles: only one system is involved at both 20 degrees C and 35 degrees C.
    Malo C
    Biochim Biophys Acta; 1993 Dec; 1153(2):299-307. PubMed ID: 8274501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Na-dependent L-proline transport by eel intestinal brush-border membrane vesicles.
    Vilella S; Ahearn GA; Cassano G; Storelli C
    Am J Physiol; 1988 Oct; 255(4 Pt 2):R648-53. PubMed ID: 3177696
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetics of sodium-activated phenylalanine influx in the guinea-pig intestine in vitro [proceedings].
    Robinson JW; Sepulveda FV
    J Physiol; 1977 Mar; 266(1):42P-43P. PubMed ID: 853408
    [No Abstract]   [Full Text] [Related]  

  • 50. Sensitivity of renal brush-border Na+-cotransport systems to anions.
    Levine R; Hirayama B; Wright EM
    Biochim Biophys Acta; 1984 Jan; 769(2):508-10. PubMed ID: 6696897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for a single common Na+-dependent transport system for alanine, glutamine, leucine and phenylalanine in brush-border membrane vesicles from bovine kidney.
    Lynch AM; McGivan JD
    Biochim Biophys Acta; 1987 May; 899(2):176-84. PubMed ID: 3580363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetics of the intestinal brush border proline (Imino) carrier.
    Stevens BR; Wright EM
    J Biol Chem; 1987 May; 262(14):6546-51. PubMed ID: 3571270
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential expression of Na+/D-glucose cotransport in isolated cells of Marsupenaeus japonicus hepatopancreas.
    Vilella S; Zilli L; Ingrosso L; Schiavone R; Zonno V; Verri T; Storelli C
    J Comp Physiol B; 2003 Nov; 173(8):679-86. PubMed ID: 12955436
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ethanol inhibits Na+-gradient-dependent uptake of L-amino acids into intestinal brush border membrane vesicles.
    Beesley RC
    Dig Dis Sci; 1986 Sep; 31(9):987-92. PubMed ID: 2426066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The mechanism of Na+-L-lactate cotransport by brush border membrane vesicles from horse kidney: analysis of rapid equilibrium kinetics in absence of membrane potential.
    Mengual R; Sudaka P
    J Membr Biol; 1983; 71(3):163-71. PubMed ID: 6842580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epidermal growth factor up-regulates sodium-glucose cotransport in enterocyte models in the presence of cholera toxin.
    Mehta DI; Horváth K; Chanasongcram S; Hill ID; Panigrahi P
    JPEN J Parenter Enteral Nutr; 1997; 21(4):185-91. PubMed ID: 9252942
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Organic and inorganic solute transport in renal and intestinal membrane vesicles preserved in liquid nitrogen.
    Stevens BR; Wright SH; Hirayama BS; Gunther RD; Ross HJ; Harms V; Nord E; Kippen I; Wright EM
    Membr Biochem; 1982; 4(4):271-82. PubMed ID: 7176933
    [TBL] [Abstract][Full Text] [Related]  

  • 58. L-leucine, L-methionine, and L-phenylalanine share a Na(+)/K (+)-dependent amino acid transporter in shrimp hepatopancreas.
    Duka A; Ahearn GA
    J Comp Physiol B; 2013 Aug; 183(6):763-71. PubMed ID: 23615795
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetics of sodium succinate cotransport across renal brush-border membranes.
    Wright SH; Hirayama B; Kaunitz JD; Kippen I; Wright EM
    J Biol Chem; 1983 May; 258(9):5456-62. PubMed ID: 6853527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mechanism of Na+-L-lactate cotransport by brush-border membrane vesicles from horse kidney. Analysis by isotopic exchange kinetics of a sequential model and stoichiometry.
    Mengual R; Leblanc G; Sudaka P
    J Biol Chem; 1983 Dec; 258(24):15071-8. PubMed ID: 6654905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.