These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7131327)

  • 61. D-glucose transport systems in rat jejunal brush border membrane: influence of ageing.
    Tosco M; Orsenigo MN; Faelli A
    Mech Ageing Dev; 1992 Apr; 63(2):131-46. PubMed ID: 1351123
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Renal transport of neutral amino acids. Tubular localization of Na+-dependent phenylalanine- and glucose-transport systems.
    Kragh-Hansen U; Røigaard-Petersen H; Jacobsen C; Sheikh MI
    Biochem J; 1984 May; 220(1):15-24. PubMed ID: 6743259
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pyridoxine transport in brush border membrane vesicles of guinea pig jejunum.
    Yoshida S; Hayashi K; Kawasaki T
    J Nutr Sci Vitaminol (Tokyo); 1981; 27(4):311-7. PubMed ID: 7328440
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cotransport of 2-methyl-aminoisobutyric acid and chloride in rabbit small intestine.
    Munck LK
    Am J Physiol; 1993 Nov; 265(5 Pt 1):G979-86. PubMed ID: 8238527
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Choline influx across the brush border of guinea pig jejunum.
    Kuczler FJ; Nahrwold DL; Rose RC
    Biochim Biophys Acta; 1977 Feb; 465(1):131-7. PubMed ID: 836831
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Intestinal glycyl-L-phenylalanine and L-phenylalanine transport in a euryhaline teleost.
    Reshkin SJ; Ahearn GA
    Am J Physiol; 1991 Mar; 260(3 Pt 2):R563-9. PubMed ID: 2001005
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Mechanism of Na+ dependent monosaccharide absorption: compartmentalization of the absorbed Na+ under in vitro conditions].
    Remke H; Schellenberger W; Mothes T; Müller F
    Acta Biol Med Ger; 1978; 37(1):49-57. PubMed ID: 706928
    [No Abstract]   [Full Text] [Related]  

  • 68. Thermodynamic stoichiometry of Na+-coupled glutathione transport.
    Gukasyan HJ; Lee VH; Simityan H; Kim KJ; Kannan R
    Can J Physiol Pharmacol; 2006 Nov; 84(11):1223-7. PubMed ID: 17218987
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Heterotropic effects of dipolar amino acids on the activity of the anionic amino acid transport system X-AG in rabbit jejunal brush-border membrane vesicles.
    Maenz DD; Chenu C; Berteloot A
    J Biol Chem; 1993 Jul; 268(21):15361-7. PubMed ID: 8340366
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Reversible binding and irreversible translocation: two distinct stages in sodium and solute cotransport in the small intestine [proceedings].
    Alvarado F
    J Physiol; 1979 Jul; 292():77P-78P. PubMed ID: 490413
    [No Abstract]   [Full Text] [Related]  

  • 71. Na+-dependent, electroneural L-ascorbate transport across brush border membrane vesicles from human small intestine: Inhibition by D-erythorbate.
    Toggenburger G; Landoldt M; Semenza G
    FEBS Lett; 1979 Dec; 108(2):473-6. PubMed ID: 520592
    [No Abstract]   [Full Text] [Related]  

  • 72. Sodium-amino acid cotransport by type II alveolar epithelial cells.
    Brown SE; Kim KJ; Goodman BE; Wells JR; Crandall ED
    J Appl Physiol (1985); 1985 Nov; 59(5):1616-22. PubMed ID: 4066594
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of sodium and pyruvate interactions of the two carrier systems specific of mono- and di- or tricarboxylic acids by renal brush-border membrane vesicles.
    Mengual R; Claude-Schlageter MH; Poiree JC; Yagello M; Sudaka P
    J Membr Biol; 1989 Jun; 108(3):197-205. PubMed ID: 2778796
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Kinetics of leucine transport in brush border membrane vesicles from lepidopteran larvae midgut.
    Parenti P; Villa M; Hanozet GM
    J Biol Chem; 1992 Aug; 267(22):15391-7. PubMed ID: 1639784
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chloride-dependent amino acid transport in the small intestine: occurrence and significance.
    Munck LK
    Biochim Biophys Acta; 1995 Jul; 1241(2):195-213. PubMed ID: 7640296
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cotransport of organic solutes and sodium ions in the small intestine: a general model. Amino acid transport.
    Alvarado F; Mahmood A
    Biochemistry; 1974 Jul; 13(14):2882-90. PubMed ID: 4407616
    [No Abstract]   [Full Text] [Related]  

  • 77. Phenylalanine transport in rabbit small intestine.
    Munck BG; Munck LK
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):99-107. PubMed ID: 7853231
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models.
    Jauch P; Läuger P
    J Membr Biol; 1986; 94(2):117-27. PubMed ID: 3560198
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Transport of imino acids and non-alpha-amino acids across the brush-border membrane of the rabbit ileum.
    Munck BG
    J Membr Biol; 1985; 83(1-2):15-24. PubMed ID: 3923197
    [TBL] [Abstract][Full Text] [Related]  

  • 80. K+ - and Na+ -gradient-dependent transport of L-phenylalanine by mouse intestinal brush border membrane vesicles.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1982 Oct; 691(2):321-31. PubMed ID: 6291610
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.