BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7131563)

  • 1. Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium?
    Kammermeier H; Schmidt P; Jüngling E
    J Mol Cell Cardiol; 1982 May; 14(5):267-77. PubMed ID: 7131563
    [No Abstract]   [Full Text] [Related]  

  • 2. Interrelationship between the free energy change of ATP-hydrolysis, cytosolic inorganic phosphate and cardiac performance during hypoxia and reoxygenation.
    Kammermeier H
    Biomed Biochim Acta; 1987; 46(8-9):S499-504. PubMed ID: 3435508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of systolic force and control of free energy of ATP-hydrolysis in hypoxic hearts.
    Kammermeier H; Roeb E; Jüngling E; Meyer B
    J Mol Cell Cardiol; 1990 Jun; 22(6):707-13. PubMed ID: 2231738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients.
    Fiolet JW; Baartscheer A; Schumacher CA; Coronel R; ter Welle HF
    J Mol Cell Cardiol; 1984 Nov; 16(11):1023-36. PubMed ID: 6520874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content.
    Bak MI; Wei JY; Ingwall JS
    J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart.
    Matthews PM; Taylor DJ; Radda GK
    Cardiovasc Res; 1986 Jan; 20(1):13-9. PubMed ID: 3708637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high Ke+-perfusion.
    Griese M; Perlitz V; Jüngling E; Kammermeier H
    J Mol Cell Cardiol; 1988 Dec; 20(12):1189-201. PubMed ID: 3249307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of adaptation to exposure to short-term stress on indices of resistance of energy metabolism and contractile function of the myocardium to acute hypoxic hypoxia and reoxygenation].
    Kopylov ON; Golubeva LIu; Saltykova VA; Meerson FZ
    Biull Eksp Biol Med; 1990 Sep; 110(9):244-6. PubMed ID: 2268705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force development, energy state and ATP production of cardiac muscle from turtles and trout during normoxia and severe hypoxia.
    Overgaard J; Gesser H
    J Exp Biol; 2004 May; 207(Pt 11):1915-24. PubMed ID: 15107445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K; Niwa T; Takeo S
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of release of adenosine triphosphate and adenosine induced by hypoxia or adrenaline in perfused rat heart.
    Vial C; Owen P; Opie LH; Posel D
    J Mol Cell Cardiol; 1987 Feb; 19(2):187-97. PubMed ID: 2883323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat.
    Bittl JA; Balschi JA; Ingwall JS
    Circ Res; 1987 Jun; 60(6):871-8. PubMed ID: 2954720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytoplasmic free energy of ATP hydrolysis in isolated rod-shaped rat ventricular myocytes.
    ter Welle HF; Baartscheer A; Fiolet JW; Schumacher CA
    J Mol Cell Cardiol; 1988 May; 20(5):435-41. PubMed ID: 3210251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of intermittent hypoxia on RNA synthesis in the isolated rat heart.
    Gibb L; Bishop SP; Nesher R; Robinson WF; Berry AJ; Kruger FA
    J Mol Cell Cardiol; 1976 Jun; 8(6):419-29. PubMed ID: 940168
    [No Abstract]   [Full Text] [Related]  

  • 15. Cytosolic free magnesium in stimulated, hypoxic, and underperfused rat heart.
    Headrick JP; Willis RJ
    J Mol Cell Cardiol; 1991 Sep; 23(9):991-9. PubMed ID: 1658349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart.
    Neubauer S; Ingwall JS
    J Mol Cell Cardiol; 1989 Nov; 21(11):1163-78. PubMed ID: 2607547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation of hypoxia-induced calcium gain and rise in resting tension in isolated rat hearts.
    Nayler WG; Elz JS; Buckley DJ
    Am J Physiol; 1988 Apr; 254(4 Pt 2):H678-85. PubMed ID: 3354696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of physical training on the mechanical and metabolic response of the rat heart to hypoxia.
    Scheuer J; Stezoski SW
    Circ Res; 1972 Apr; 30(4):418-29. PubMed ID: 5013858
    [No Abstract]   [Full Text] [Related]  

  • 19. Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: role of high-energy phosphate depletion.
    Wexler LF; Lorell BH; Momomura S; Weinberg EO; Ingwall JS; Apstein CS
    Circ Res; 1988 Apr; 62(4):766-75. PubMed ID: 2964946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is force production in the myocardium directly dependent upon the free energy change of ATP hydrolysis?
    Kentish JC; Allen DG
    J Mol Cell Cardiol; 1986 Sep; 18(9):879-84. PubMed ID: 3783727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.