These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 7132231)

  • 21. Inner medullary collecting duct function in ischemic acute renal failure.
    Wilson DR; Honrath U
    Clin Invest Med; 1988 Jun; 11(3):157-66. PubMed ID: 3402104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compensated heart failure predisposes to outer medullary tubular injury: studies in rats.
    Goldfarb M; Abassi Z; Rosen S; Shina A; Brezis M; Heyman SN
    Kidney Int; 2001 Aug; 60(2):607-13. PubMed ID: 11473643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Possible involvement of myofibroblasts in cellular recovery of uranyl acetate-induced acute renal failure in rats.
    Sun DF; Fujigaki Y; Fujimoto T; Yonemura K; Hishida A
    Am J Pathol; 2000 Oct; 157(4):1321-35. PubMed ID: 11021836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Renal water-electrolyte excretion and its control mechanisms. Current status of knowledge].
    Agnoli GC; Garutti C
    Minerva Med; 1976 Nov; 67(56):3673-702. PubMed ID: 995312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of tubular cell proliferation by neutralizing endogenous HGF leads to renal hypoxia and bone marrow-derived cell engraftment in acute renal failure.
    Ohnishi H; Mizuno S; Nakamura T
    Am J Physiol Renal Physiol; 2008 Feb; 294(2):F326-35. PubMed ID: 18032545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maintenance of renal function in salt loaded rats despite severe tubular necrosis induced by HgCl 2 .
    DiBona GF; McDonald FD; Flamenbaum W; Dammin GJ; Oken DE
    Nephron; 1971; 8(3):205-20. PubMed ID: 5155275
    [No Abstract]   [Full Text] [Related]  

  • 27. Tubular cell damage in acute renal failure-apoptosis, necrosis, or both.
    Ueda N; Shah SV
    Nephrol Dial Transplant; 2000 Mar; 15(3):318-23. PubMed ID: 10692516
    [No Abstract]   [Full Text] [Related]  

  • 28. Glomerular and tubular dynamics in mercuric chloride-induced acute renal failure.
    Conger JD; Falk SA
    J Lab Clin Med; 1986 Apr; 107(4):281-9. PubMed ID: 3958570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ischemic acute renal failure and antioxidant therapy in the rat. The relation between glomerular and tubular dysfunction.
    Bird JE; Milhoan K; Wilson CB; Young SG; Mundy CA; Parthasarathy S; Blantz RC
    J Clin Invest; 1988 May; 81(5):1630-8. PubMed ID: 2835399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maintenance and recovery stages of postischemic acute renal failure in humans.
    Ramaswamy D; Corrigan G; Polhemus C; Boothroyd D; Scandling J; Sommer FG; Alfrey E; Higgins J; Deen WM; Olshen R; Myers BD
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F271-80. PubMed ID: 11788441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interleukin-6 stimulates tubular regeneration in rats with glycerol-induced acute renal failure.
    Homsi E; Ribeiro-Alves MA; Lopes de Faria JB; Dias EP
    Nephron; 2002 Sep; 92(1):192-9. PubMed ID: 12187102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acute renal failure. II. Experimental models of acute renal failure: imperfect but indispensable.
    Lieberthal W; Nigam SK
    Am J Physiol Renal Physiol; 2000 Jan; 278(1):F1-F12. PubMed ID: 10644651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute renal failure in man: pathogenesis in light of new morphological data.
    Olsen S; Solez K
    Clin Nephrol; 1987 Jun; 27(6):271-7. PubMed ID: 3301119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time course of growth factor expression in mercuric chloride acute renal failure.
    Verstrepen WA; Nouwen EJ; Zhu MQ; Ghielli M; De Broe ME
    Nephrol Dial Transplant; 1995; 10(8):1361-71. PubMed ID: 8538927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Acute renal insufficiency in multiple myeloma. Ultrastructural study of multinuclear giant cells].
    Palazzi P; Ferrario G; Torri Tarelli L; Meroni M; Giordano F; Volpi A; Sessa A
    Minerva Urol Nefrol; 1984; 36(4):267-76. PubMed ID: 6535271
    [No Abstract]   [Full Text] [Related]  

  • 36. Histologic and functional renal alterations caused by Bothrops moojeni snake venom in rats.
    Boer-Lima PA; Gontijo JA; da Cruz-Höfling MA
    Am J Trop Med Hyg; 1999 Nov; 61(5):698-706. PubMed ID: 10586897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glomerular alterations in experimental oliguric and nonoliguric acute renal failure.
    Kato A; Hishida A; Kobayashi S; Honda N
    Ren Fail; 1993; 15(2):215-24. PubMed ID: 8469790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A light and electron microscopic study of renal tubular regeneration.
    Kempczinski RF; Caulfield JB
    Nephron; 1968; 5(4):249-64. PubMed ID: 5670178
    [No Abstract]   [Full Text] [Related]  

  • 39. Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure.
    Cheng CW; Rifai A; Ka SM; Shui HA; Lin YF; Lee WH; Chen A
    Kidney Int; 2005 Dec; 68(6):2694-703. PubMed ID: 16316344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pathogenetic significance of tubular leakage in acute renal failure (vasomotor nephropathy).
    Oken DE
    Ren Fail; 1987-1988; 10(3-4):125-34. PubMed ID: 3332723
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.