BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 7132405)

  • 1. The relationship between myocardial temperature and recovery after experimental cardioplegic arrest.
    Rosenfeldt FL
    J Thorac Cardiovasc Surg; 1982 Nov; 84(5):656-66. PubMed ID: 7132405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does lower systemic temperature enhance cardioplegic myocardial protection?
    Grover FL; Fewel JG; Ghidoni JJ; Trinkle JK
    J Thorac Cardiovasc Surg; 1981 Jan; 81(1):11-20. PubMed ID: 7453211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection of the chronic hypoxic immature rat heart during global ischemia.
    Karck M; Ziemer G; Zoeller M; Schulte S; Juergens KD; Weisser H; Haverich A
    Ann Thorac Surg; 1995 Mar; 59(3):699-706. PubMed ID: 7887715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature during potassium arrest on myocardial metabolism and function.
    Kao RL; Conti VR; Williams EH
    J Thorac Cardiovasc Surg; 1982 Aug; 84(2):243-9. PubMed ID: 7098510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of L-arginine on myocardial recovery after cardioplegic arrest and ischemia under moderate and deep hypothermia.
    Amrani M; Gray CC; Smolenski RT; Goodwin AT; London A; Yacoub MH
    Circulation; 1997 Nov; 96(9 Suppl):II-274-9. PubMed ID: 9386110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of normothermic induction of blood cardioplegia in energy-depleted hearts, with maintenance of arrest by multidose cold blood cardioplegic infusions.
    Rosenkranz ER; Vinten-Johansen J; Buckberg GD; Okamoto F; Edwards H; Bugyi H
    J Thorac Cardiovasc Surg; 1982 Nov; 84(5):667-77. PubMed ID: 7132406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temperature dependence of recovery of metabolic function following hypothermic potassium cardioplegic arrest.
    Rousou JH; Dobbs WA; Meeran MK; Engelman RM
    J Thorac Cardiovasc Surg; 1982 Jan; 83(1):117-21. PubMed ID: 7054606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between coronary pressure during reperfusion and myocardial recovery after hypothermic cardioplegia.
    Rosenfeldt FL; Rabinov M; Little P; Campbell G
    J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 1):414-24. PubMed ID: 3489137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the metabolic response of the hypertrophic and the normal heart to hypothermic cardioplegia. The effect of temperature.
    Rabinov M; Chen XZ; Rosenfeldt FL
    J Thorac Cardiovasc Surg; 1989 Jan; 97(1):43-9. PubMed ID: 2521366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of reperfusional damage from ischemic myocardium.
    Kao RL; Magovern GJ
    J Thorac Cardiovasc Surg; 1986 Jan; 91(1):106-14. PubMed ID: 3941553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Hyperpolarized cardiac arrest with ATP-sensitive potassium channel opener on myocardial protection during CPB].
    Yu T; Liu X; Yu Z; Yang S; Ye Y; Yang X; Gao Z
    Zhonghua Wai Ke Za Zhi; 2000 Dec; 38(12):931-4. PubMed ID: 11832201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of reperfusion temperature and pressure on the functional and metabolic recovery of preserved hearts.
    Swanson DK; Myerowitz PD
    J Thorac Cardiovasc Surg; 1983 Aug; 86(2):242-51. PubMed ID: 6876860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural protection of the myocardial capillary endothelium by different forms of cardiac arrest and subsequent global ischemia at 5 degrees C.
    Marten K; Schmiedl A; Schnabel PA; Richter J
    Thorac Cardiovasc Surg; 1999 Aug; 47(4):205-12. PubMed ID: 10522788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat stress attenuates ATP-depletion and pH-decrease during cardioplegic arrest.
    Vogt S; Troitzsch D; Abdul-Khaliq H; Moosdorf R
    J Surg Res; 2007 May; 139(2):176-81. PubMed ID: 17336331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature threshold and modulation of energy metabolism in the cardioplegic arrested rabbit heart.
    Ning XH; Xu CS; Song YC; Childs KF; Xiao Y; Bolling SF; Lupinetti FM; Portman MA
    Cryobiology; 1998 Feb; 36(1):2-11. PubMed ID: 9500928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normocalcemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia.
    Pearl JM; Laks H; Drinkwater DC; Meneshian A; Sun B; Gates RN; Chang P
    J Thorac Cardiovasc Surg; 1993 Feb; 105(2):201-6. PubMed ID: 8429645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of perfusate temperature on myocardial protection from ischemia.
    Tyers GF; Williams EH; Hughes HC; Todd GJ
    J Thorac Cardiovasc Surg; 1977 May; 73(5):766-71. PubMed ID: 850437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contracture of the newborn myocardium after prolonged prearrest cooling.
    Shum-Tim D; Tchervenkov CI; Hosseinzadeh T; Chiu RC
    J Thorac Cardiovasc Surg; 1993 Oct; 106(4):643-50. PubMed ID: 8412258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and metabolic protection of the neonatal myocardium from ischemia. Insufficient protection by cardioplegia.
    Watanabe H; Yokosawa T; Eguchi S; Imai S
    J Thorac Cardiovasc Surg; 1989 Jan; 97(1):50-8. PubMed ID: 2911197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial function after preservation for 24 hours.
    Burt JM; Copeland JG
    J Thorac Cardiovasc Surg; 1986 Aug; 92(2):238-46. PubMed ID: 3525995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.