BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7132563)

  • 1. Brain 3,4-dihydroxyphenylethyleneglycol levels are dependent on central noradrenergic neuron activity.
    Scatton B
    Life Sci; 1982 Aug; 31(5):495-504. PubMed ID: 7132563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for the involvement of presynaptic alpha-2 adrenoceptors in the regulation of norepinephrine metabolism in the rat brain.
    Curet O; Dennis T; Scatton B
    J Pharmacol Exp Ther; 1987 Jan; 240(1):327-36. PubMed ID: 3027307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further evidence for, and nature of, the facilitatory GABAergic influence on central noradrenergic transmission.
    Dennis T; Curet O; Nishikawa T; Scatton B
    Naunyn Schmiedebergs Arch Pharmacol; 1985 Nov; 331(2-3):225-34. PubMed ID: 3003590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further characterization of brain 3,4-dihydroxyphenylethyleneglycol (DHPG) formation: dependence on noradrenergic activity and site of formation.
    Li PP; Warsh JJ; Godse DD
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Jan; 332(1):26-33. PubMed ID: 3951564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo measurement of noradrenaline and 3,4-dihydroxyphenylethyleneglycol in the rat hypothalamus by microdialysis: effects of various drugs affecting noradrenaline metabolism.
    Itoh Y; Oishi R; Nishibori M; Saeki K
    J Pharmacol Exp Ther; 1990 Dec; 255(3):1090-7. PubMed ID: 2262894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain noradrenergic neuronal activity affects 3,4-dihydroxyphenylethyleneglycol (DHPG) levels.
    Warsh JJ; Li PP; Godse DD; Cheung S
    Life Sci; 1981 Sep; 29(13):1303-7. PubMed ID: 7289782
    [No Abstract]   [Full Text] [Related]  

  • 7. 3-Methoxy-4-hydroxyphenylethyleneglycol concentrations in discrete hypothalamic nuclei reflect the activity of noradrenergic neurons.
    Lookingland KJ; Ireland LM; Gunnet JW; Manzanares J; Tian Y; Moore KE
    Brain Res; 1991 Sep; 559(1):82-8. PubMed ID: 1685939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in dopamine and DOPAC levels in noradrenergic terminals after electrical stimulation of the ascending noradrenergic pathways.
    Scatton B; Dennis T; Curet O
    Brain Res; 1984 Apr; 298(1):193-6. PubMed ID: 6609744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor activity of rats after stimulation of the nucleus locus coeruleus region or after lesion of the dorsal noradrenergic bundle: effects of clonidine, prazosin and yohimbine.
    Velley L; Kempf E; Cardo B
    Psychopharmacology (Berl); 1982; 78(3):239-44. PubMed ID: 6296900
    [No Abstract]   [Full Text] [Related]  

  • 10. Transmitter release modulated by alpha-adrenoceptor antagonists in the rabbit mesenteric artery: a comparison between noradrenaline outflow and electrical activity.
    Mishima S; Miyahara H; Suzuki H
    Br J Pharmacol; 1984 Oct; 83(2):537-47. PubMed ID: 6148987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of normetanephrine, 3,4-dihydroxyphenylethyleneglycol (free and total), and 3-methoxy-4-hydroxyphenylethyleneglycol (free and total) in rat brain by high-performance liquid chromatography with electrochemical detection and effects of drugs on regional concentrations.
    Westerink BH
    J Neurochem; 1984 Apr; 42(4):934-42. PubMed ID: 6699645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortical dialysis: effects of drugs affecting noradrenergic transmission.
    L'Heureux R; Dennis T; Curet O; Scatton B
    J Neurochem; 1986 Jun; 46(6):1794-801. PubMed ID: 2871129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation in the central norepinephrine neurotransmission induced in vivo by alpha adrenoceptor active drugs.
    Braestrup C; Nielsen M
    J Pharmacol Exp Ther; 1976 Sep; 198(3):596-608. PubMed ID: 185355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat brain norepinephrine metabolism: substantial clearance through 3,4-dihydroxyphenylethyleneglycol formation.
    Li PP; Warsh JJ; Godse DD
    J Neurochem; 1983 Oct; 41(4):1065-71. PubMed ID: 6619846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of 3-methoxy-4-hydroxyphenylglycol (MHPG) in mouse brain by h.p.l.c. with electrochemical detection, as an index of noradrenaline utilisation and presynaptic alpha 2-adrenoceptor function.
    Heal DJ; Prow MR; Buckett WR
    Br J Pharmacol; 1989 Mar; 96(3):547-56. PubMed ID: 2541844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dihydroxyphenylglycol as an index of neuronal uptake in dog saphenous vein.
    Rorie DK; Hunter LW; Tyce GM
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H1945-51. PubMed ID: 2603979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of tyramine on noradrenaline outflow and electrical responses induced by field stimulation in the perfused rabbit ear artery.
    Miyahara H; Suzuki H
    Br J Pharmacol; 1985 Oct; 86(2):405-16. PubMed ID: 2996679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible physiological significance of the initial step in the catabolism of noradrenaline in the central nervous system of the rat.
    Farah MB; Adler-Graschinsky E; Langer SZ
    Naunyn Schmiedebergs Arch Pharmacol; 1977 Mar; 297(2):119-31. PubMed ID: 585416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noradrenaline metabolism in neocortex and hippocampus following transient forebrain ischemia in rats: relation to development of selective neuronal necrosis.
    Miyauchi Y; Wieloch T; Lindvall O
    J Neurochem; 1989 Aug; 53(2):408-15. PubMed ID: 2501451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of deaminated metabolites of dopamine in the locus coeruleus depends upon noradrenergic neuronal activity.
    Curet O; Dennis T; Scatton B
    Brain Res; 1985 Jun; 335(2):297-301. PubMed ID: 2988695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.