These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 7132563)
1. Brain 3,4-dihydroxyphenylethyleneglycol levels are dependent on central noradrenergic neuron activity. Scatton B Life Sci; 1982 Aug; 31(5):495-504. PubMed ID: 7132563 [TBL] [Abstract][Full Text] [Related]
2. Evidence for the involvement of presynaptic alpha-2 adrenoceptors in the regulation of norepinephrine metabolism in the rat brain. Curet O; Dennis T; Scatton B J Pharmacol Exp Ther; 1987 Jan; 240(1):327-36. PubMed ID: 3027307 [TBL] [Abstract][Full Text] [Related]
3. Further evidence for, and nature of, the facilitatory GABAergic influence on central noradrenergic transmission. Dennis T; Curet O; Nishikawa T; Scatton B Naunyn Schmiedebergs Arch Pharmacol; 1985 Nov; 331(2-3):225-34. PubMed ID: 3003590 [TBL] [Abstract][Full Text] [Related]
4. Further characterization of brain 3,4-dihydroxyphenylethyleneglycol (DHPG) formation: dependence on noradrenergic activity and site of formation. Li PP; Warsh JJ; Godse DD Naunyn Schmiedebergs Arch Pharmacol; 1986 Jan; 332(1):26-33. PubMed ID: 3951564 [TBL] [Abstract][Full Text] [Related]
5. In vivo measurement of noradrenaline and 3,4-dihydroxyphenylethyleneglycol in the rat hypothalamus by microdialysis: effects of various drugs affecting noradrenaline metabolism. Itoh Y; Oishi R; Nishibori M; Saeki K J Pharmacol Exp Ther; 1990 Dec; 255(3):1090-7. PubMed ID: 2262894 [TBL] [Abstract][Full Text] [Related]
6. Brain noradrenergic neuronal activity affects 3,4-dihydroxyphenylethyleneglycol (DHPG) levels. Warsh JJ; Li PP; Godse DD; Cheung S Life Sci; 1981 Sep; 29(13):1303-7. PubMed ID: 7289782 [No Abstract] [Full Text] [Related]
7. 3-Methoxy-4-hydroxyphenylethyleneglycol concentrations in discrete hypothalamic nuclei reflect the activity of noradrenergic neurons. Lookingland KJ; Ireland LM; Gunnet JW; Manzanares J; Tian Y; Moore KE Brain Res; 1991 Sep; 559(1):82-8. PubMed ID: 1685939 [TBL] [Abstract][Full Text] [Related]
8. Increase in dopamine and DOPAC levels in noradrenergic terminals after electrical stimulation of the ascending noradrenergic pathways. Scatton B; Dennis T; Curet O Brain Res; 1984 Apr; 298(1):193-6. PubMed ID: 6609744 [TBL] [Abstract][Full Text] [Related]
9. Locomotor activity of rats after stimulation of the nucleus locus coeruleus region or after lesion of the dorsal noradrenergic bundle: effects of clonidine, prazosin and yohimbine. Velley L; Kempf E; Cardo B Psychopharmacology (Berl); 1982; 78(3):239-44. PubMed ID: 6296900 [No Abstract] [Full Text] [Related]
10. Transmitter release modulated by alpha-adrenoceptor antagonists in the rabbit mesenteric artery: a comparison between noradrenaline outflow and electrical activity. Mishima S; Miyahara H; Suzuki H Br J Pharmacol; 1984 Oct; 83(2):537-47. PubMed ID: 6148987 [TBL] [Abstract][Full Text] [Related]
11. Determination of normetanephrine, 3,4-dihydroxyphenylethyleneglycol (free and total), and 3-methoxy-4-hydroxyphenylethyleneglycol (free and total) in rat brain by high-performance liquid chromatography with electrochemical detection and effects of drugs on regional concentrations. Westerink BH J Neurochem; 1984 Apr; 42(4):934-42. PubMed ID: 6699645 [TBL] [Abstract][Full Text] [Related]
12. Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortical dialysis: effects of drugs affecting noradrenergic transmission. L'Heureux R; Dennis T; Curet O; Scatton B J Neurochem; 1986 Jun; 46(6):1794-801. PubMed ID: 2871129 [TBL] [Abstract][Full Text] [Related]
13. Regulation in the central norepinephrine neurotransmission induced in vivo by alpha adrenoceptor active drugs. Braestrup C; Nielsen M J Pharmacol Exp Ther; 1976 Sep; 198(3):596-608. PubMed ID: 185355 [TBL] [Abstract][Full Text] [Related]
14. Rat brain norepinephrine metabolism: substantial clearance through 3,4-dihydroxyphenylethyleneglycol formation. Li PP; Warsh JJ; Godse DD J Neurochem; 1983 Oct; 41(4):1065-71. PubMed ID: 6619846 [TBL] [Abstract][Full Text] [Related]
15. Measurement of 3-methoxy-4-hydroxyphenylglycol (MHPG) in mouse brain by h.p.l.c. with electrochemical detection, as an index of noradrenaline utilisation and presynaptic alpha 2-adrenoceptor function. Heal DJ; Prow MR; Buckett WR Br J Pharmacol; 1989 Mar; 96(3):547-56. PubMed ID: 2541844 [TBL] [Abstract][Full Text] [Related]
16. Dihydroxyphenylglycol as an index of neuronal uptake in dog saphenous vein. Rorie DK; Hunter LW; Tyce GM Am J Physiol; 1989 Dec; 257(6 Pt 2):H1945-51. PubMed ID: 2603979 [TBL] [Abstract][Full Text] [Related]
17. Effects of tyramine on noradrenaline outflow and electrical responses induced by field stimulation in the perfused rabbit ear artery. Miyahara H; Suzuki H Br J Pharmacol; 1985 Oct; 86(2):405-16. PubMed ID: 2996679 [TBL] [Abstract][Full Text] [Related]
18. Possible physiological significance of the initial step in the catabolism of noradrenaline in the central nervous system of the rat. Farah MB; Adler-Graschinsky E; Langer SZ Naunyn Schmiedebergs Arch Pharmacol; 1977 Mar; 297(2):119-31. PubMed ID: 585416 [TBL] [Abstract][Full Text] [Related]
19. Noradrenaline metabolism in neocortex and hippocampus following transient forebrain ischemia in rats: relation to development of selective neuronal necrosis. Miyauchi Y; Wieloch T; Lindvall O J Neurochem; 1989 Aug; 53(2):408-15. PubMed ID: 2501451 [TBL] [Abstract][Full Text] [Related]
20. The formation of deaminated metabolites of dopamine in the locus coeruleus depends upon noradrenergic neuronal activity. Curet O; Dennis T; Scatton B Brain Res; 1985 Jun; 335(2):297-301. PubMed ID: 2988695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]