These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7134636)

  • 1. Protective effects of verapamil against isoprenaline- induced mobilization of mitochondrial calcium and cellular lipid droplets in the myocardium.
    Saetersdal T; Røli J; Engedal H; Jodalen H; Rotevatn S
    Res Exp Med (Berl); 1982; 181(1):39-47. PubMed ID: 7134636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of isoproterenol on lipid accumulation in myocardial cells.
    Jodalen H; Lie R; Rotevatn S
    Res Exp Med (Berl); 1982; 181(3):239-44. PubMed ID: 7163651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propranolol induced lipid accumulation and mitochondrial granularity in myocardial cells.
    Rotevatn S; Jodalen HG; Lie RK
    Cardiovasc Res; 1983 May; 17(5):290-3. PubMed ID: 6883405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular manganese uptake by the isolated perfused rat heart: a probe for the sarcolemma calcium channel.
    Hunter DR; Haworth RA; Berkoff HA
    J Mol Cell Cardiol; 1981 Sep; 13(9):823-32. PubMed ID: 6271977
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of verapamil on intracellular lipid accumulation in cat hearts with 3 h of regional-ischaemia.
    Jodalen H; Rotevatn S; Stangeland L; Grong K; Vik-Mo H
    Scand J Clin Lab Invest; 1989 Feb; 49(1):55-61. PubMed ID: 2727618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of anipamil on myocardial sarcolemmal and mitochondrial calcium transport, comparison with verapamil and nifedipine.
    Ferrari R; Boraso A; Cargnoni A; Pasini E; Raddino R; Albertini A
    Eur J Pharmacol; 1990 Sep; 189(2-3):149-61. PubMed ID: 2147656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of verapamil on the abnormalities in fatty acid oxidation of myocardium.
    Perna AF; Smogorzewski M; Massry SG
    Kidney Int; 1989 Sep; 36(3):453-7. PubMed ID: 2593489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the antiarrhythmic action of verapamil.
    Sugiyama S; Kitazawa M; Kotaka K; Miyazaki Y; Ozawa T
    J Cardiovasc Pharmacol; 1981; 3(4):801-6. PubMed ID: 6167809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium and magnesium levels in isolated cardiac mitochondria from mice injected with isoproterenol.
    Saetersdal T; Engedal H; Røli J; Jodalen H; Rotevatn S
    Cell Tissue Res; 1981; 215(1):13-9. PubMed ID: 6164487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibiting effect of droperidol compared with verapamil on the myocardial fiber calcium exchange determined by a simple physiological procedure.
    García-Barreto D; Pérez A; Hernández K
    Arch Int Pharmacodyn Ther; 1977 Oct; 229(2):213-8. PubMed ID: 596976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of verapamil on the transmural energy metabolism in the isoproterenol-induced myocardial lesion.
    Higuchi M; Takenaka F
    Jpn Heart J; 1978 Nov; 19(6):913-7. PubMed ID: 750673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of mibefradil, verapamil, and amlodipine on myocardial function and intracellular Ca(2+) handling in rats with chronic myocardial infarction.
    Min JY; Sandmann S; Meissner A; Unger T; Simon R
    J Pharmacol Exp Ther; 1999 Dec; 291(3):1038-44. PubMed ID: 10565822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different effect of propranolol and verapamil on isoprenaline-induced changes in the chick embryonic heart.
    Ostádal B; Janatová T; Krause EG; Pelouch V; Dusek J
    Physiol Bohemoslov; 1987; 36(4):301-11. PubMed ID: 2821565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective effects of R 56 865 against ischemic damage in the isolated rabbit heart.
    Vandeplassche G; Thoné F; Borgers M
    Eur J Pharmacol; 1991 Sep; 202(2):259-68. PubMed ID: 1666368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of biochemical functions and ventricular performance in regional ischemic-reperfused myocardium by afterload reduction: differential effects of calcium blocking and non-calcium blocking vasodilators.
    Odom H; Peng CF; Murphy ML; Davis JL; Straub KD
    Int J Cardiol; 1988 Dec; 21(3):233-46. PubMed ID: 3229862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+-antagonists inhibit the N-methyltransferase-dependent synthesis of phosphatidylcholine in the heart.
    Tappia PS; Okumura K; Kawabata K; Shah KR; Nijjar MS; Panagia V; Dhalla NS
    Mol Cell Biochem; 2001 May; 221(1-2):89-98. PubMed ID: 11506191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenesis of isoproterenol-induced lesions in the rat myocardium.
    Milei J; Núñez RG; Rapaport M
    Arch Inst Cardiol Mex; 1976; 46(4):347-55. PubMed ID: 988794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Ca2+ antagonism on energy metabolism: Ca2+ and heart function after ischemia.
    Watts JA; Koch CD; LaNoue KF
    Am J Physiol; 1980 Jun; 238(6):H909-16. PubMed ID: 7386650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization by autoradiography of tritiated isoproterenol in "infarct-like" lesions of rat myocardium.
    Milei J; Rapaport M
    Am Heart J; 1976 Sep; 92(3):351-5. PubMed ID: 949029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of flunarizine on intracellular calcium in isolated rat cardiomyocytes. A digital image processing study.
    Geerts H; Nuydens R; Nuyens R; Ver Donck L
    Cardiovasc Res; 1989 Sep; 23(9):797-806. PubMed ID: 2611817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.