These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7134817)

  • 1. Arterial pH monitoring with monocrystalline antimony sensors. A study of sensitivity for PO2 variations.
    Nilsson E; Edwall G
    Scand J Clin Lab Invest; 1982 Jun; 42(4):323-9. PubMed ID: 7134817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oxygen sensitivity of a multipoint antimony electrode for tissue pH measurements. A study of the sensitivity for in vivo PO2 variations below 6 kPa.
    Sjöberg F; Edwall G; Lund N
    Scand J Clin Lab Invest; 1987 Feb; 47(1):11-5. PubMed ID: 3576105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous intra-arterial pH-monitoring using monocrystalline antimony as sensor. A study in non-heparinized dogs.
    Nilsson E; Edwall G
    Scand J Clin Lab Invest; 1981 Jun; 41(4):333-8. PubMed ID: 6273994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous intra-arterial PO2 monitoring with a surface heparinized catheter electrode. A study of conformity in conventional blood gas analysis and of long-term electrode function in the non-heparinized dog.
    Nilsson E; Edwall G; Larsson R; Olsson P
    Scand J Clin Lab Invest; 1982 Jun; 42(4):331-8. PubMed ID: 7134818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual mode antimony electrode for simultaneous measurements of PO2 and pH.
    Sjöberg F; Nilsson G
    Acta Anaesthesiol Scand; 2000 Jan; 44(1):32-6. PubMed ID: 10669268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen sensitivity of a multichannel antimony microelectrode for tissue surface oxygen pressure measurements.
    Sjöberg F; Thorborg P; Wranne B; Lund N
    Microcirc Endothelium Lymphatics; 1990; 6(2-3):127-48. PubMed ID: 2247022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous pH monitoring with monocrystalline antimony electrodes: toxicity considerations from studies on heparinized human plasma.
    Nilsson E; Edwall G
    Scand J Clin Lab Invest; 1983 Oct; 43(6):539-42. PubMed ID: 6658371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term monitoring of arterial pO2 in burned patients.
    Nilsson E; Arnander C
    Clin Physiol; 1984 Feb; 4(1):13-21. PubMed ID: 6538127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarographic pO2 sensors with heparinized membranes for in vitro and continuous in vivo registration.
    Nilsson E; Edwall G; Larsson R; Olsson P
    Scand J Clin Lab Invest; 1981 Oct; 41(6):557-63. PubMed ID: 7336122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in esophageal oxygen tension measured with intraluminal antimony electrodes.
    Tibbling L; Sjöberg F
    Dysphagia; 1995; 10(2):121-5. PubMed ID: 7600854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a miniature antimony electrode for measurement of myocardial pH.
    Rosenfeldt FL; Ou R; Smith JA; Mulcahy DE; Bannigan JT; Haskard MR
    J Med Eng Technol; 1999; 23(4):119-26. PubMed ID: 10561822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial evaluation of a new intra-arterial blood gas system in humans.
    Zimmerman JL; Dellinger RP
    Crit Care Med; 1993 Apr; 21(4):495-500. PubMed ID: 8472566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain parenchyma PO2, PCO2, and pH during and after hypoxic, ischemic brain insult in dogs.
    McKinley BA; Morris WP; Parmley CL; Butler BD
    Crit Care Med; 1996 Nov; 24(11):1858-68. PubMed ID: 8917037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New approach for elucidating the oxygen sensitivity and calibration of the antimony electrode.
    Sjöberg F; Nilsson G; Gustafsson U
    Med Biol Eng Comput; 1997 May; 35(3):207-10. PubMed ID: 9246853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glass and antimony electrodes for long-term pH monitoring: a dynamic in vitro comparison.
    Geus WP; Smout AJ; Kooiman JC; Lamers CB; Gues JW
    Eur J Gastroenterol Hepatol; 1995 Jan; 7(1):29-35. PubMed ID: 7866807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical performance of a blood gas monitor: a prospective, multicenter trial.
    Shapiro BA; Mahutte CK; Cane RD; Gilmour IJ
    Crit Care Med; 1993 Apr; 21(4):487-94. PubMed ID: 8472565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy and utility of a continuous intra-arterial blood gas monitoring system in pediatric patients.
    Coule LW; Truemper EJ; Steinhart CM; Lutin WA
    Crit Care Med; 2001 Feb; 29(2):420-6. PubMed ID: 11246326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous intra-arterial oxygen monitoring: accuracy and reliability in the surgical intensive care unit.
    Lemus JF; Kearney T; Margulies DR; Mackenzie DJ; Leyerle BJ; Shabot MM
    Am Surg; 1992 Dec; 58(12):740-2. PubMed ID: 1456597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous intra-arterial blood gas and pH monitoring in critically ill patients with severe respiratory failure: a prospective, criterion standard study.
    Haller M; Kilger E; Briegel J; Forst H; Peter K
    Crit Care Med; 1994 Apr; 22(4):580-7. PubMed ID: 8143467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of extreme metabolic acidosis on oxygen delivery capacity of the blood--an in vitro investigation of changes in the oxyhemoglobin dissociation curve in blood with pH values of approximately 6.30.
    Refsum HE; Opdahl H; Leraand S
    Crit Care Med; 1997 Sep; 25(9):1497-501. PubMed ID: 9295823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.