These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 7135441)

  • 1. [Population kinetics of microcolonies causing "shouldered" survival curves at low LET].
    Harder D; Virsik P
    Strahlentherapie; 1982 Jul; 158(7):440-3. PubMed ID: 7135441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of cell survival as predicted by the repair/interaction model.
    Harder D; Virsik-Peuckert P
    Br J Cancer Suppl; 1984; 6():243-7. PubMed ID: 6582912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationships between RBE and LET for different types of lethal damage in mammalian cells: biophysical and molecular mechanisms.
    Barendsen GW
    Radiat Res; 1994 Sep; 139(3):257-70. PubMed ID: 8073108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of repair models for LET effects and other radiobiological phenomena.
    Alper T
    Br J Cancer Suppl; 1984; 6():137-43. PubMed ID: 6365136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A benchmark of cell survival models using survival curves for human cells after completion of repair of potentially lethal damage.
    Fertil B; Reydellet I; Deschavanne PJ
    Radiat Res; 1994 Apr; 138(1):61-9. PubMed ID: 8146301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation damage repair capacity of primary clonogenic blasts in acute lymphoblastic leukemia.
    Uckun FM; Chandan-Langlie M; Jaszcz W; Obuz V; Waddick K; Song CW
    Cancer Res; 1993 Mar; 53(6):1431-6. PubMed ID: 8443821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tests of the double-strand break, lethal-potentially lethal and repair-misrepair models for mammalian cell survival using data for survival as a function of delayed-plating interval for log-phase Chinese hamster V79 cells.
    Lange CS; Mayer PJ; Reddy NM
    Radiat Res; 1997 Sep; 148(3):285-92. PubMed ID: 9291360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical modelling of proton radiation effects based on amorphous track models.
    Paganetti H; Goitein M
    Int J Radiat Biol; 2001 Sep; 77(9):911-28. PubMed ID: 11576451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A statistical theory of cell killing by radiation of varying linear energy transfer.
    Hawkins RB
    Radiat Res; 1994 Dec; 140(3):366-74. PubMed ID: 7972689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LET-dependent survival of irradiated normal human fibroblasts and their descendents.
    Hamada N; Funayama T; Wada S; Sakashita T; Kakizaki T; Ni M; Kobayashi Y
    Radiat Res; 2006 Jul; 166(1 Pt 1):24-30. PubMed ID: 16808611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy.
    Park C; Papiez L; Zhang S; Story M; Timmerman RD
    Int J Radiat Oncol Biol Phys; 2008 Mar; 70(3):847-52. PubMed ID: 18262098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer programs for the analysis of cellular survival data.
    Albright N
    Radiat Res; 1987 Nov; 112(2):331-40. PubMed ID: 3685260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resensitization due to redistribution of cells in the phases of the cell cycle during arbitrary radiation protocols.
    Hahnfeldt P; Hlatky L
    Radiat Res; 1996 Feb; 145(2):134-43. PubMed ID: 8606922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined use of Monte Carlo DNA damage simulations and deterministic repair models to examine putative mechanisms of cell killing.
    Carlson DJ; Stewart RD; Semenenko VA; Sandison GA
    Radiat Res; 2008 Apr; 169(4):447-59. PubMed ID: 18363426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction and repair of DNA double-strand breaks in the same dose range as the shoulder of the survival curve.
    Nevaldine B; Longo JA; Vilenchik M; King GA; Hahn PJ
    Radiat Res; 1994 Nov; 140(2):161-5. PubMed ID: 7938463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic considerations on the dose-rate/LET dependence of oncogenic transformation by ionizing radiations.
    Brenner DJ; Hall EJ; Randers-Pehrson G; Miller RC
    Radiat Res; 1993 Mar; 133(3):365-9. PubMed ID: 8451388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The response of Chinese hamster V79-379A cells exposed to negative pi-mesons: evidence that increased radioresistance is dependent on linear energy transfer.
    Marples B; Lam GK; Zhou H; Skov KA
    Radiat Res; 1994 Apr; 138(1 Suppl):S81-4. PubMed ID: 8146334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dose rate on the radiation-induced bystander response.
    Gow MD; Seymour CB; Byun SH; Mothersill CE
    Phys Med Biol; 2008 Jan; 53(1):119-32. PubMed ID: 18182691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions.
    Kundrát P
    Phys Med Biol; 2006 Mar; 51(5):1185-99. PubMed ID: 16481687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biological effectiveness of radon-progeny alpha particles. IV. Morphological transformation of Syrian hamster embryo cells at low doses.
    Martin SG; Miller RC; Geard CR; Hall EJ
    Radiat Res; 1995 Apr; 142(1):70-7. PubMed ID: 7899561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.