BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 713584)

  • 1. In vitro hydrodynamic comparison of mitral valve prostheses at high flow rates.
    Gabbay S; McQueen DM; Yellin EL; Becker RM; Frater RW
    J Thorac Cardiovasc Surg; 1978 Dec; 76(6):771-87. PubMed ID: 713584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro hydrodynamic comparison of mitral valve bioprostheses.
    Gabbay S; McQueen DM; Yellin EL; Frater RW
    Circulation; 1979 Aug; 60(2 Pt 2):62-70. PubMed ID: 445776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Doppler echocardiography in assessing mechanical and biological heart valve prostheses].
    Minardi G; Di Segni M; Boccardi L; Ferrari O; Giovannini E
    G Ital Cardiol; 1988 Feb; 18(2):121-34. PubMed ID: 3410201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rest and exercise hemodynamics following aortic valve replacement. A comparison between 19 and 21 mm Ionescu-Shiley pericardial and Carpentier-Edwards porcine valves.
    Bove EL; Marvasti MA; Potts JL; Reger MJ; Zamora JL; Eich RH; Parker FB
    J Thorac Cardiovasc Surg; 1985 Nov; 90(5):750-5. PubMed ID: 4058047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic performance of the Ionescu-Shiley valve prosthesis.
    Becker RM; Strom J; Frishman W; Oka Y; Lin YT; Yellin EL; Frater RW
    J Thorac Cardiovasc Surg; 1980 Oct; 80(4):613-20. PubMed ID: 7421295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro assessment of mitral valve prostheses.
    Walker DK; Scotten LN; Modi VJ; Brownlee RT
    J Thorac Cardiovasc Surg; 1980 May; 79(5):680-8. PubMed ID: 7366235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small aortic annulus: the hydrodynamic performances of 5 commercially available tissue valves.
    Gerosa G; Tarzia V; Rizzoli G; Bottio T
    J Thorac Cardiovasc Surg; 2006 May; 131(5):1058-64. PubMed ID: 16678590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel pulse duplicator system: evaluation of different valve prostheses.
    Haaf P; Steiner M; Attmann T; Pfister G; Cremer J; Lutter G
    Thorac Cardiovasc Surg; 2009 Feb; 57(1):10-7. PubMed ID: 19169990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valve prosthesis hemodynamics and the problem of high transprosthetic pressure gradients.
    Dumesnil JG; Yoganathan AP
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S34-7; discussion S38. PubMed ID: 1389276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New generation tissue valves. Their in vitro function in the mitral position.
    Walker DK; Scotten LN; Brownlee RT
    J Thorac Cardiovasc Surg; 1984 Oct; 88(4):573-82. PubMed ID: 6482489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central hemodynamics at rest and during exercise after mitral valve replacement with different prostheses.
    Horstkotte D; Haerten K; Seipel L; Körfer R; Budde T; Bircks W; Loogen F
    Circulation; 1983 Sep; 68(3 Pt 2):II161-8. PubMed ID: 6872188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative study of mechanical heart valves for implantation in mitral position].
    Heiliger R; Lambertz H; Geks J; Mittermayer C
    Herz; 1987 Dec; 12(6):405-12. PubMed ID: 3428845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Hemodynamics after mitral valve replacement with Starr-Edwards, Björk-Shiley and Lillehei-Kaster protheses (author's transl)].
    Haerten K; Both A; Lück J; Herzer J; Loogen F
    Z Kardiol; 1977 May; 66(5):242-6. PubMed ID: 878552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic comparison of Hancock and Carpentier-Edwards mitral bioprosthetic valves.
    Khan S; Mitchell RS; Derby GC; Oyer PE; Miller DC
    Circulation; 1990 Nov; 82(5 Suppl):IV75-81. PubMed ID: 2225438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative hydrodynamic evaluation of bioprosthetic heart valves.
    Marquez S; Hon RT; Yoganathan AP
    J Heart Valve Dis; 2001 Nov; 10(6):802-11. PubMed ID: 11767190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current status of the Beall, Bjork-Shiley, Braunwald-Cutter, Lillehei-Kaster and Smeloff-Cutter cardiac valve prostheses.
    Brawley RK; Donahoo JS; Gott VL
    Am J Cardiol; 1975 Jun; 35(6):855-65. PubMed ID: 124127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic evaluation of Hancock and Carpentier-Edwards bioprostheses.
    Levine FH; Carter JE; Buckley MJ; Daggett WM; Akins CW; Austen WG
    Circulation; 1981 Aug; 64(2 Pt 2):II192-5. PubMed ID: 7249322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in Hancock and Carpentier-Edwards porcine xenograft aortic valve hemodynamics. Effect of valve size.
    Khan SS; Mitchell RS; Derby GC; Oyer PE; Miller DC
    Circulation; 1990 Nov; 82(5 Suppl):IV117-24. PubMed ID: 2225396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of valve resistance, the continuity equation, and the Gorlin formula against directly observed orifice area in bioprosthetic valves in the mitral position: an in vitro study.
    Chambers JB; Wang Z; Cooke RA; Black MM
    J Heart Valve Dis; 1996 Mar; 5(2):136-43. PubMed ID: 8665004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doppler hemodynamic evaluation of prosthetic (Starr-Edwards and Björk-Shiley) and bioprosthetic (Hancock and Carpentier-Edwards) cardiac valves.
    Williams GA; Labovitz AJ
    Am J Cardiol; 1985 Aug; 56(4):325-32. PubMed ID: 4025173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.