These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 7136784)

  • 1. Combined effect of elastic energy and myoelectrical potentiation during stretch-shortening cycle exercise.
    Bosco C; Viitasalo JT; Komi PV; Luhtanen P
    Acta Physiol Scand; 1982 Apr; 114(4):557-65. PubMed ID: 7136784
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of prestretch intensity on mechanical efficiency of positive work and on elastic behavior of skeletal muscle in stretch-shortening cycle exercise.
    Aura O; Komi PV
    Int J Sports Med; 1986 Jun; 7(3):137-43. PubMed ID: 3733310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of elastic energy and myoelectrical potentiation of triceps surae during stretch-shortening cycle exercise.
    Bosco C; Tarkka I; Komi PV
    Int J Sports Med; 1982 Aug; 3(3):137-40. PubMed ID: 7129720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed.
    Komi PV
    Exerc Sport Sci Rev; 1984; 12():81-121. PubMed ID: 6376140
    [No Abstract]   [Full Text] [Related]  

  • 5. Potentiation of myoelectrical activity of human muscles in vertical jumps.
    Bosco C; Viitasalo JT
    Electromyogr Clin Neurophysiol; 1982 Dec; 22(7):549-62. PubMed ID: 7151734
    [No Abstract]   [Full Text] [Related]  

  • 6. Neuromuscular function and mechanical efficiency of human leg extensor muscles during jumping exercises.
    Bosco C; Ito A; Komi PV; Luhtanen P; Rahkila P; Rusko H; Viitasalo JT
    Acta Physiol Scand; 1982 Apr; 114(4):543-50. PubMed ID: 7136782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromyographic and force production characteristics of leg extensor muscles of elite weight lifters during isometric, concentric, and various stretch-shortening cycle exercises.
    Häkkinen K; Komi PV; Kauhanen H
    Int J Sports Med; 1986 Jun; 7(3):144-51. PubMed ID: 2942500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG-activity and muscular performance of lower leg during stretch-shortening cycle after cooling.
    Oksa J; Rintamäki H; Mäkinen T; Martikkala V; Rusko H
    Acta Physiol Scand; 1996 May; 157(1):1-8. PubMed ID: 8735656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of isometric, isotonic and isokinetic exercises by electromyography.
    Rosentswieg J; Hinson MM
    Arch Phys Med Rehabil; 1972 Jun; 53(6):249-52. PubMed ID: 5035077
    [No Abstract]   [Full Text] [Related]  

  • 10. Myoelectrical manifestations of localized muscular fatigue in humans.
    De Luca CJ
    Crit Rev Biomed Eng; 1984; 11(4):251-79. PubMed ID: 6391814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total muscle mass activation vs relative loading of individual muscle as determinants of exercise response in older men.
    De Vries HA; Adams GM
    Med Sci Sports; 1972; 4(3):146-54. PubMed ID: 5076452
    [No Abstract]   [Full Text] [Related]  

  • 12. Fatigue during stretch-shortening cycle exercises. II. Changes in neuromuscular activation patterns of human skeletal muscle.
    Gollhofer A; Komi PV; Fujitsuka N; Miyashita M
    Int J Sports Med; 1987 Mar; 8 Suppl 1():38-47. PubMed ID: 3583519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on the changes in integrated muscular biolectrical activity in relation to the strength and duration of the effort].
    Solomon C; Teodorescu C
    Fiziol Norm Patol; 1965; 11(6):523-30. PubMed ID: 5885302
    [No Abstract]   [Full Text] [Related]  

  • 14. Changes in working capacity and electrical activity of muscles during the development and compensation of fatigue due to strenuous muscular activity.
    Monogarov VD
    Hum Physiol; 1984; 10(2):135-45. PubMed ID: 6544700
    [No Abstract]   [Full Text] [Related]  

  • 15. [Effect of a submaximal muscular exercise on the threshold of monosynaptic reflexes in man. I. Effects on the thresholds of tendinous responses].
    Macarez JA; Henane R
    C R Seances Soc Biol Fil; 1970; 164(7):1524-8. PubMed ID: 4251935
    [No Abstract]   [Full Text] [Related]  

  • 16. Relationship of the biomechanical properties of muscles to their ability to utilize elastic deformation energy.
    Aruin AS; Prilutskii BI
    Hum Physiol; 1985; 11(1):8-12. PubMed ID: 4077067
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of different working heights on the deltoid muscle. A preliminary methodological study.
    Jonsson B; Hagberg M
    Scand J Rehabil Med Suppl; 1974; 3():26-32. PubMed ID: 4528773
    [No Abstract]   [Full Text] [Related]  

  • 18. Apparent efficiency and storage of elastic energy in human muscles during exercise.
    Asmussen E; Bonde-Petersen F
    Acta Physiol Scand; 1974 Dec; 92(4):537-45. PubMed ID: 4455009
    [No Abstract]   [Full Text] [Related]  

  • 19. [Suppression of R-wave-blocked pacemakers by muscle action potentials (author's transl)].
    Ulrich B; Buchta I; Schulte HD; Bircks W; Loogen F
    Thoraxchir Vask Chir; 1974 Feb; 22(1):46-52. PubMed ID: 4545449
    [No Abstract]   [Full Text] [Related]  

  • 20. [Changes in bioelectric muscular activity during voluntary contractions under defined conditions].
    Rhein A; Buchholz C; Kramer H; Küchler G
    Acta Biol Med Ger; 1974; 33(2):231-9. PubMed ID: 4463639
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.