These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 713686)

  • 1. Deuterium isotope effect in bioactivation and hepatotoxicity of chloroform.
    Pohl LR; Krishna G
    Life Sci; 1978 Sep; 23(10):1067-72. PubMed ID: 713686
    [No Abstract]   [Full Text] [Related]  

  • 2. Protective effects of azathioprine and phenobarbital on acute liver damage produced by galactosamine.
    Perings E; Brunner G; Vido I; Söling HD; Creutzfeldt W
    Acta Hepatogastroenterol (Stuttg); 1973; 20(2):130-4. PubMed ID: 4148023
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of cysteine, diethyl maleate, and phenobarbital treatments on the hepatotoxicity of [1H]chloroform.
    Stevens JL; Anders MW
    Chem Biol Interact; 1981 Oct; 37(1-2):207-17. PubMed ID: 7285244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the effects of methyl-N-butyl ketone and phenobarbital on rat liver cytochromes P-450 and the metabolism of chloroform to phosgene.
    Branchflower RV; Schulick RD; George JW; Pohl LR
    Toxicol Appl Pharmacol; 1983 Dec; 71(3):414-21. PubMed ID: 6658790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosgene: a possible role in the potentiation of carbon tetrachloride hepatotoxicity by 2-propanol.
    Harris RN; Anders MW
    Life Sci; 1981 Aug; 29(5):503-7. PubMed ID: 6792440
    [No Abstract]   [Full Text] [Related]  

  • 6. Evaluation of prophylactic efficacy of silymarin in CC14-induced hepatotoxicity.
    Williams DE; Priestly BG
    Res Commun Chem Pathol Pharmacol; 1973 Jul; 6(1):185-94. PubMed ID: 4733996
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of different cytochrome P450 isoforms in in vitro chloroform metabolism.
    Testai E; De Curtis V; Gemma S; Fabrizi L; Gervasi P; Vittozzi L
    J Biochem Toxicol; 1996; 11(6):305-12. PubMed ID: 9176742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of chloroform nephrotoxicity. IV. Phenobarbital potentiation of in vitro chloroform metabolism and toxicity in rabbit kidneys.
    Bailie MB; Smith JH; Newton JF; Hook JB
    Toxicol Appl Pharmacol; 1984 Jun; 74(2):285-92. PubMed ID: 6740677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrazole treatment of rats potentiates CCL4-but not CHCL3-hepatotoxicity.
    Ebel RE
    Biochem Biophys Res Commun; 1989 Jun; 161(2):615-8. PubMed ID: 2735913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Propanol treatment induces selectively the metabolism of carbon tetrachloride to phosgene. Implications for carbon tetrachloride hepatotoxicity.
    Harris RN; Anders MW
    Drug Metab Dispos; 1981; 9(6):551-6. PubMed ID: 6120815
    [No Abstract]   [Full Text] [Related]  

  • 11. Different contributions of cytochrome P450 2E1 and P450 2B1/2 to chloroform hepatotoxicity in rat.
    Nakajima T; Elovaara E; Okino T; Gelboin HV; Klockars M; Riihimäki V; Aoyama T; Vainio H
    Toxicol Appl Pharmacol; 1995 Aug; 133(2):215-22. PubMed ID: 7645016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of the effects of chloroform on the rat liver.
    Scholler KL
    Br J Anaesth; 1970 Jul; 42(7):603-5. PubMed ID: 5453242
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction of caffeine with acetaminophen. 1. Correlation of the effect of caffeine on acetaminophen hepatotoxicity and acetaminophen bioactivation following treatment of mice with various cytochrome P450 inducing agents.
    Jaw S; Jeffery EH
    Biochem Pharmacol; 1993 Aug; 46(3):493-501. PubMed ID: 8347173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deuterium isotope effect in in vivo bioactivation of chloroform to phosgene.
    Pohl LR; George JW; Martin JL; Krishna G
    Biochem Pharmacol; 1979; 28(4):561-3. PubMed ID: 426878
    [No Abstract]   [Full Text] [Related]  

  • 15. The effects of phenobarbital and 3,4-benzypyrene on microsomal cytochrome P-450 and NADPH-cytochrome C reductase in regenerating rat liver after partial hepatectomy or chemical injury.
    Katz DI; Stenger RJ; Johnson EA; Datta RK; Rice J
    Arch Int Pharmacodyn Ther; 1977 Oct; 229(2):180-91. PubMed ID: 413503
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of drug pretreatment on CBrCl3-induced liver injury.
    Torrielli MV; Ugazio G; Gabriel L; Burdino E
    Toxicology; 1974 Dec; 2(4):321-6. PubMed ID: 4851635
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolism of haloforms to carbon monoxide. IV. studies on the reaction mechanism in vivo.
    Stevens JL; Anders MW
    Chem Biol Interact; 1981 Nov; 37(3):365-74. PubMed ID: 7296701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of CYP2E1 and saturation kinetics in the bioactivation of thioacetamide: Effects of diet restriction and phenobarbital.
    Chilakapati J; Korrapati MC; Shankar K; Hill RA; Warbritton A; Latendresse JR; Mehendale HM
    Toxicol Appl Pharmacol; 2007 Feb; 219(1):72-84. PubMed ID: 17234228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute cocaine-induced hepatotoxicity in DBA/2Ha male mice.
    Kloss MW; Rosen GM; Rauckman EJ
    Toxicol Appl Pharmacol; 1982 Aug; 65(1):75-83. PubMed ID: 7147258
    [No Abstract]   [Full Text] [Related]  

  • 20. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: role of cytochrome P-450.
    Sipes IG; Krishna G; Gillette JR
    Life Sci; 1977 May; 20(9):1541-8. PubMed ID: 17803
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.