These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7137347)

  • 1. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles.
    Nord E; Wright SH; Kippen I; Wright EM
    Am J Physiol; 1982 Nov; 243(5):F456-62. PubMed ID: 7137347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity of the Na+-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes.
    Nord EP; Wright SH; Kippen I; Wright EM
    J Membr Biol; 1983; 72(3):213-21. PubMed ID: 6854625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of sodium and pyruvate interactions of the two carrier systems specific of mono- and di- or tricarboxylic acids by renal brush-border membrane vesicles.
    Mengual R; Claude-Schlageter MH; Poiree JC; Yagello M; Sudaka P
    J Membr Biol; 1989 Jun; 108(3):197-205. PubMed ID: 2778796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proton gradient is the driving force for uphill transport of lactate in human placental brush-border membrane vesicles.
    Balkovetz DF; Leibach FH; Mahesh VB; Ganapathy V
    J Biol Chem; 1988 Sep; 263(27):13823-30. PubMed ID: 2843538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histidyl residues at the active site of the Na/succinate co-transporter in rabbit renal brush borders.
    Bindslev N; Wright EM
    J Membr Biol; 1984; 81(2):159-70. PubMed ID: 6541702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetry of the Na+-succinate cotransporter in rabbit renal brush-border membranes.
    Hirayama B; Wright EM
    Biochim Biophys Acta; 1984 Aug; 775(1):17-21. PubMed ID: 6466657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinate and citrate transport in renal basolateral and brush-border membranes.
    Wright SH; Wunz TM
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F432-9. PubMed ID: 3631279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for distinct pathways in rabbit renal brush-border membrane vesicles for the transport of unsubstituted and alpha-hydroxysubstituted aliphatic monocarboxylic acids.
    Barbarat B; Podevin RA
    J Biol Chem; 1987 Sep; 262(27):13102-6. PubMed ID: 3654603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of renal brush-border Na+-cotransport systems to anions.
    Levine R; Hirayama B; Wright EM
    Biochim Biophys Acta; 1984 Jan; 769(2):508-10. PubMed ID: 6696897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Uptake of L-(+)lactate by cell membrane (luminal and contraluminal) isolated from rat small intestine microvilli].
    Corcelli A; Storelli-Joss C; Lippe C; Storelli C
    Boll Soc Ital Biol Sper; 1979 Mar; 55(5):460-6. PubMed ID: 553602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye.
    Wright SH; Krasne S; Kippen I; Wright EM
    Biochim Biophys Acta; 1981 Feb; 640(3):767-78. PubMed ID: 7213704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of pyruvate by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule.
    Jørgensen KE; Sheikh MI
    Biochim Biophys Acta; 1988 Mar; 938(3):345-52. PubMed ID: 3349069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dicarboxylate transport in renal basolateral and brush-border membrane vesicles.
    Kim YK; Jung JS; Lee SH
    Can J Physiol Pharmacol; 1992 Jan; 70(1):106-12. PubMed ID: 1581843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex.
    Barac-Nieto M; Murer H; Kinne R
    Pflugers Arch; 1982 Feb; 392(4):366-71. PubMed ID: 7070969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1983 Sep; 245(3):F374-81. PubMed ID: 6225342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements.
    Kragh-Hansen U; Jørgensen KE; Sheikh MI
    Biochem J; 1982 Nov; 208(2):359-68. PubMed ID: 7159404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic asymmetry of renal Na+-L-lactate cotransport. Characteristic parameters and evidence for a ping pong mechanism of the trans-stimulating exchange by pyruvate.
    Mengual R; Schlageter MH; Sudaka P
    J Biol Chem; 1990 Jan; 265(1):292-9. PubMed ID: 2294107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes.
    Wright SH; Kippen I; Wright EM
    J Biol Chem; 1982 Feb; 257(4):1773-8. PubMed ID: 7056744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrier-mediated L-lactate transport in brush-border membrane vesicles from rat placenta during late gestation.
    Alonso de la Torre SR; Serrano MA; Alvarado F; Medina JM
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):535-41. PubMed ID: 1654886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of carboxylic acids by renal membrane vesicles.
    Wright EM
    Annu Rev Physiol; 1985; 47():127-41. PubMed ID: 3888071
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.