These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Classification of beta-adrenoceptors in the microcirculation of skeletal muscle. Hillman J; Lundvall J Acta Physiol Scand; 1981 Sep; 113(1):67-71. PubMed ID: 6274164 [TBL] [Abstract][Full Text] [Related]
6. Beta-adrenergic dilator interaction with the constrictor response in resistance vessels of skeletal muscle during hemorrhage. Hillman J; Lundvall J Acta Physiol Scand; 1980 Jan; 108(1):77-83. PubMed ID: 6246719 [TBL] [Abstract][Full Text] [Related]
7. In vivo effects of endothelin-2, endothelin-3 and ETA receptor blockade on arterial, venous and capillary functions in cat skeletal muscle. Ekelund U Acta Physiol Scand; 1994 Jan; 150(1):47-56. PubMed ID: 8135123 [TBL] [Abstract][Full Text] [Related]
8. Alpha 2-adrenoceptor activation may trigger the increased production of endothelium-derived nitric oxide in skeletal muscle during acute haemorrhage. Ekelund U; Björnberg J; Mellander S Acta Physiol Scand; 1998 Nov; 164(3):285-92. PubMed ID: 9853016 [TBL] [Abstract][Full Text] [Related]
9. Hormonal and neurogenic adrenergic control of the fluid transfer from skeletal muscle to blood during hemorrhage. Hillman J; Lundvall J Acta Physiol Scand; 1981 Jul; 112(3):271-80. PubMed ID: 6270957 [TBL] [Abstract][Full Text] [Related]
10. Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone. Mellander S; Maspers M; Björnberg J; Andersson LO Acta Physiol Scand; 1987 Mar; 129(3):337-51. PubMed ID: 2883809 [TBL] [Abstract][Full Text] [Related]
11. Effects of angiotensin-converting enzyme inhibition on arterial, venous and capillary functions in cat skeletal muscle in vivo. Ekelund U Acta Physiol Scand; 1996 Sep; 158(1):29-37. PubMed ID: 8876745 [TBL] [Abstract][Full Text] [Related]
12. In-vivo effects of endothelin-1 and ETA receptor blockade on arterial, venous and capillary functions in skeletal muscle. Ekelund U; Albert U; Edvinsson L; Mellander S Acta Physiol Scand; 1993 Jul; 148(3):273-83. PubMed ID: 8213182 [TBL] [Abstract][Full Text] [Related]
13. Comparative effects of angiotensin and noradrenaline on resistance, capacitance, and precapillary sphincter vessels in cat skeletal muscle. Järhult J Acta Physiol Scand; 1971 Mar; 81(3):315-24. PubMed ID: 4323804 [No Abstract] [Full Text] [Related]
14. [The influence of several vasoactive substances on the capacitance and resistance vessels of skeletal musculature]. Cherniavskaia GV Fiziol Zh SSSR Im I M Sechenova; 1970 Mar; 56(3):375-83. PubMed ID: 5496313 [No Abstract] [Full Text] [Related]
15. [Comparative characterization of reactions of skeletal muscle arterial and venous vessels to combined adrenergic effects]. Talash SA; Tkachenko BI; Kurdiashov IuA Biull Eksp Biol Med; 1990 Jul; 110(7):5-7. PubMed ID: 2224100 [TBL] [Abstract][Full Text] [Related]
16. Microsphere analysis of beta 2-adrenergic control of resistance in different vascular areas after hemorrhage. Gustafsson D; Andersson L; Mårtensson L; Lundvall J Acta Physiol Scand; 1984 Jun; 121(2):119-26. PubMed ID: 6147953 [TBL] [Abstract][Full Text] [Related]
17. Beta-adrenergic control of resistance in individual vessels in rabbit tenuissimus muscle. Borgström P; Lindbom L; Arfors KE; Intaglietta M Am J Physiol; 1988 Apr; 254(4 Pt 2):H631-5. PubMed ID: 3354692 [TBL] [Abstract][Full Text] [Related]