These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7138822)

  • 1. Interaction between cytochrome b5 and human methemoglobin.
    Mauk MR; Mauk AG
    Biochemistry; 1982 Sep; 21(19):4730-4. PubMed ID: 7138822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrophotometric analysis of the interaction between cytochrome b5 and cytochrome c.
    Mauk MR; Reid LS; Mauk AG
    Biochemistry; 1982 Apr; 21(8):1843-6. PubMed ID: 6282323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic analysis of the interaction of cytochrome c with native and dimethyl ester heme substituted cytochrome b5.
    Mauk MR; Mauk AG; Weber PC; Matthew JB
    Biochemistry; 1986 Nov; 25(22):7085-91. PubMed ID: 3026446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic circular dichroism studies of hemoglobin. The reduction of ferrihemoglobin by ferrocytochrome b5 and characterization of the high-spin hydroxy species of mixed-valence hemoglobin.
    Juckett DA; Hultquist DE
    Biophys Chem; 1984 Jun; 19(4):321-35. PubMed ID: 6743764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of methemoglobin reductase and kinetic study of methemoglobin reduction.
    Kuma F
    J Biol Chem; 1981 Jun; 256(11):5518-23. PubMed ID: 7240153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models for the complexes formed between cytochrome b5 and the subunits of methemoglobin.
    Poulos TL; Mauk AG
    J Biol Chem; 1983 Jun; 258(12):7369-73. PubMed ID: 6863249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of flavin semiquinone reduction of the components of the cytochrome c-cytochrome b5 complex.
    Eltis L; Mauk AG; Hazzard JT; Cusanovich MA; Tollin G
    Biochemistry; 1988 Jul; 27(15):5455-60. PubMed ID: 2846038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thermal stability of the tryptic fragment of bovine microsomal cytochrome b5 and a variant containing six additional residues.
    Newbold RJ; Hewson R; Whitford D
    FEBS Lett; 1992 Dec; 314(3):419-24. PubMed ID: 1468578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between cytochrome b5 and hemoglobin: involvement of beta 66 (E10) and beta 95 (FG2) lysyl residues of hemoglobin.
    Gacon G; Lostanlen D; Labie D; Kaplan JC
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1917-21. PubMed ID: 6769116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinking of cytochrome c and cytochrome b5 with a water-soluble carbodiimide. Reaction conditions, product analysis and critique of the technique.
    Mauk MR; Mauk AG
    Eur J Biochem; 1989 Dec; 186(3):473-86. PubMed ID: 2558010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of horse heart ferricytochrome c by bovine liver ferrocytochrome b5. Experimental and theoretical analysis.
    Eltis LD; Herbert RG; Barker PD; Mauk AG; Northrup SH
    Biochemistry; 1991 Apr; 30(15):3663-74. PubMed ID: 1849735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer from cytochrome b5 to iron and copper complexes.
    Reid LS; Gray HB; Dalvit C; Wright PE; Saltman P
    Biochemistry; 1987 Nov; 26(22):7102-7. PubMed ID: 3427061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and mechanism of electron transfer from dithionite to microsomal cytochrome b5 and to forms of the protein associated with charged and neutral vesicles.
    Davies DM; Lawther JM
    Biochem J; 1989 Mar; 258(2):375-80. PubMed ID: 2705988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant human erythrocyte cytochrome b5.
    Lloyd E; Ferrer JC; Funk WD; Mauk MR; Mauk AG
    Biochemistry; 1994 Sep; 33(38):11432-7. PubMed ID: 7918357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman spectral properties and stability of manganese protoporphyrin IX cytochrome b5.
    Gruenke LD; Sun J; Loehr TM; Waskell L
    Biochemistry; 1997 Jun; 36(23):7114-25. PubMed ID: 9188711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c.
    Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M
    Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of oxyhaemoglobin into methaemoglobin by ferricytochrome b5.
    Mauk MR; Reid LS; Mauk AG
    Biochem J; 1984 Jul; 221(2):297-302. PubMed ID: 6477474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct enzyme titration curve of NADH: cytochrome b5 reductase by combined isoelectric focusing/electrophoresis. Interactions between enzyme and cytochrome b5.
    Lostanlen D; Gacon G; Kaplan JC
    Eur J Biochem; 1980 Nov; 112(1):179-83. PubMed ID: 7449761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid sequences of cytochrome b5 from human, porcine, and bovine erythrocytes and comparison with liver microsomal cytochrome b5.
    Abe K; Kimura S; Kizawa R; Anan FK; Sugita Y
    J Biochem; 1985 Jun; 97(6):1659-68. PubMed ID: 4030743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.