BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 7138835)

  • 1. Fluorescence and nuclear relaxation enhancement studies of the binding of glutathione derivatives to manganese-reconstituted glyoxalase I from human erythrocytes. A model for the catalytic mechanism of the enzyme involving a hydrated metal ion.
    Sellin S; Eriksson LE; Mannervik B
    Biochemistry; 1982 Sep; 21(20):4850-7. PubMed ID: 7138835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron paramagnetic resonance study of the active site of copper-substituted human glyoxalase I.
    Sellin S; Eriksson LE; Mannervik B
    Biochemistry; 1987 Oct; 26(21):6779-84. PubMed ID: 2827734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the active site of glyoxalase I from human erythrocytes by use of the strong reversible inhibitor S-p-bromobenzylglutathione and metal substitutions.
    Aronsson AC; Sellin S; Tibbelin G; Mannervik B
    Biochem J; 1981 Jul; 197(1):67-75. PubMed ID: 7317034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR and computer modeling studies of the conformations of glutathione derivatives at the active site of glyoxalase I.
    Rosevear PR; Sellin S; Mannervik B; Kuntz ID; Mildvan AS
    J Biol Chem; 1984 Sep; 259(18):11436-47. PubMed ID: 6547959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13C NMR studies of the product complex of glyoxalase I.
    Rosevear PR; Chari RV; Kozarich JW; Sellin S; Mannervik B; Mildvan AS
    J Biol Chem; 1983 Jun; 258(11):6823-6. PubMed ID: 6853506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of the reaction catalyzed by glyoxalase I. Calculation of the equilibrium constant for the enzymatic reaction.
    Sellin S; Mannervik B
    J Biol Chem; 1983 Jul; 258(14):8872-5. PubMed ID: 6863314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of mammalian glyoxalase I (lactoylglutathione lyase) by N-acylated S-blocked glutathione derivatives as a probe for the role of the N-site of glutathione in glyoxalase I mechanism.
    Al-Timari A; Douglas KT
    Biochim Biophys Acta; 1986 Mar; 870(1):160-8. PubMed ID: 3947646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis.
    Maggio ET; Kenyon GL; Mildvan AS; Hegeman GD
    Biochemistry; 1975 Mar; 14(6):1131-9. PubMed ID: 164210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear relaxation studies of the role of the essential metal in glyoxalase I.
    Sellin S; Rosevear PR; Mannervik B; Mildvan AS
    J Biol Chem; 1982 Sep; 257(17):10023-9. PubMed ID: 7107595
    [No Abstract]   [Full Text] [Related]  

  • 10. Partial transition-state inhibitors of glyoxalase I from human erythrocytes, yeast and rat liver.
    Douglas KT; Gohel DI; Nadvi IN; Quilter AJ; Seddon AP
    Biochim Biophys Acta; 1985 May; 829(1):109-18. PubMed ID: 3888271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal dissociation constants for glyoxalase I reconstituted with Zn2+, Co2+, Mn2+, and Mg2+.
    Sellin S; Mannervik B
    J Biol Chem; 1984 Sep; 259(18):11426-9. PubMed ID: 6470005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octahedral metal coordination in the active site of glyoxalase I as evidenced by the properties of Co(II)-glyoxalase I.
    Sellin S; Eriksson LE; Aronsson AC; Mannervik B
    J Biol Chem; 1983 Feb; 258(4):2091-3. PubMed ID: 6296126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal ion binding properties of hen ovalbumin and S-ovalbumin: characterization of the metal ion binding site by 31P NMR and water proton relaxation rate enhancements.
    Goux WJ; Venkatasubramanian PN
    Biochemistry; 1986 Jan; 25(1):84-94. PubMed ID: 3954996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of glyoxalase I purified from pig erythrocytes by affinity chromatography.
    Aronsson AC; Mannervik B
    Biochem J; 1977 Sep; 165(3):503-9. PubMed ID: 921763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of a divalent cation in the binding of fructose 6-phosphate to Trypanosoma cruzi phosphofructokinase: kinetic and magnetic resonance studies.
    Urbina JA; Ysern X; Mildvan AS
    Arch Biochem Biophys; 1990 Apr; 278(1):187-94. PubMed ID: 2138869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue.
    Cameron AD; Ridderström M; Olin B; Kavarana MJ; Creighton DJ; Mannervik B
    Biochemistry; 1999 Oct; 38(41):13480-90. PubMed ID: 10521255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+.
    Conyers GB; Wu G; Bessman MJ; Mildvan AS
    Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and activity of gamma-(L-gamma-azaglutamyl)-S-(p-bromobenzyl)-L-cysteinylglycine: a metabolically stable inhibitor of glyoxalase I.
    Vince R; Brownell J; Akella LB
    Bioorg Med Chem Lett; 1999 Mar; 9(6):853-6. PubMed ID: 10206549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.