These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 7138835)

  • 21. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons.
    Zukin RS; Hollis DP
    J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of efficiency in the glyoxalase pathway.
    Creighton DJ; Migliorini M; Pourmotabbed T; Guha MK
    Biochemistry; 1988 Sep; 27(19):7376-84. PubMed ID: 3207683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and partial characterization of glyoxalase I from bovine brain.
    Lupidi G; Venardi G; Bollettini M; Marmocchi F; Rotilio G
    Prep Biochem Biotechnol; 2001 Aug; 31(3):305-16. PubMed ID: 11513094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assay of glyoxalase I in blood.
    Brandt RB; Waters MG; Laux JE
    Biochem Med; 1983 Dec; 30(3):305-12. PubMed ID: 6360161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the N-terminus of glutathione in the action of yeast glyoxalase I.
    Douglas KT; Al-Timari A; D'Silva C; Gohel DI
    Biochem J; 1982 Nov; 207(2):323-29. PubMed ID: 7159385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of glyoxalase I by the enediol mimic S-(N-hydroxy-N-methylcarbamoyl)glutathione. The possible basis of a tumor-selective anticancer strategy.
    Hamilton DS; Creighton DJ
    J Biol Chem; 1992 Dec; 267(35):24933-6. PubMed ID: 1459997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of glyoxalase I from porcine erythrocytes and yeast by amino-group reagents.
    Mannervik B; Marmstål E; Ekwall K; Górna-Hall B
    Eur J Biochem; 1975 May; 53(2):327-33. PubMed ID: 237756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of the glyoxalase system in human red blood cells by glucose in vitro.
    Thornalley PJ
    Biochem J; 1988 Sep; 254(3):751-5. PubMed ID: 3196289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical modification of tyrosine residues in glyoxalase I from yeast and human erythrocytes.
    Carrington SJ; Fetherbe D; Douglas KT
    Int J Biochem; 1989; 21(8):901-8. PubMed ID: 2684702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isomerization of (R)- and (S)-glutathiolactaldehydes by glyoxalase I: the case for dichotomous stereochemical behavior in a single active site.
    Landro JA; Brush EJ; Kozarich JW
    Biochemistry; 1992 Jul; 31(26):6069-77. PubMed ID: 1627549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton magnetic relaxation studies of the interaction of D-xylose and xylitol with D-xylose isomerase. Characterization of metal-enzyme-substrate interactions.
    Young JM; Schray KJ; Mildvan AS
    J Biol Chem; 1975 Dec; 250(23):9021-7. PubMed ID: 1194275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli.
    Koren R; Mildvan S
    Biochemistry; 1977 Jan; 16(2):241-9. PubMed ID: 189795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases.
    Bernat BA; Laughlin LT; Armstrong RN
    Biochemistry; 1997 Mar; 36(11):3050-5. PubMed ID: 9115979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonstereospecific substrate usage by glyoxalase I.
    Griffis CE; Ong LH; Buettner L; Creighton DJ
    Biochemistry; 1983 Jun; 22(12):2945-51. PubMed ID: 6347254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of metal ions in the maintenance of the tertiary and quaternary structure of arginase from Saccharomyces cerevisiae.
    Green SM; Ginsburg A; Lewis MS; Hensley P
    J Biol Chem; 1991 Nov; 266(32):21474-81. PubMed ID: 1939179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding of the competitive inhibitor S-(p-bromobenzyl)-glutathione to glyoxalase I from yeast.
    Marmstal E; Mannervik B
    FEBS Lett; 1979 Jun; 102(1):162-4. PubMed ID: 378697
    [No Abstract]   [Full Text] [Related]  

  • 38. Synthesis of S-lactoyl-glutathione using glyoxalase I bound to sepharose 4B.
    Piskorska D; Jerzykowski T; Ostrowska M
    Experientia; 1976 Nov; 32(11):1382-3. PubMed ID: 991975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. S-(N-aryl-N-hydroxycarbamoyl)glutathione derivatives are tight-binding inhibitors of glyoxalase I and slow substrates for glyoxalase II.
    Murthy NS; Bakeris T; Kavarana MJ; Hamilton DS; Lan Y; Creighton DJ
    J Med Chem; 1994 Jul; 37(14):2161-6. PubMed ID: 8035422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method based on the use of methanol as a stabilizing agent to prepare metal-free glyoxalase I and to reconstitute activity by addition of bivalent metal ions.
    Sellin S; Aronsson AC; Mannervik B
    Acta Chem Scand B; 1980; 34(7):541-3. PubMed ID: 7445911
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.