These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7138835)

  • 41. Inhibitors of glyoxalase I in vitro.
    Brandt RB; Brandt ME; April ME; Thomson C
    Biochem Med; 1983 Jun; 29(3):385-91. PubMed ID: 6615496
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Population genetics of glyoxalase I (E.C.4.4.1.5) in human erythrocytes.
    Berg K; Rodewald A; Schwarzfischer F; Wischerath H
    Z Rechtsmed; 1977 Jan; 79(1):13-5. PubMed ID: 848131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The human red blood cell glyoxalase system in diabetes mellitus.
    Thornalley PJ; Hooper NI; Jennings PE; Florkowski CM; Jones AF; Lunec J; Barnett AH
    Diabetes Res Clin Pract; 1989 Aug; 7(2):115-20. PubMed ID: 2776650
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal ion substitution at the catalytic site of horse-liver alcohol dehydrogenase: results from solvent magnetic relaxation studies. 2. Binding of manganese(II) and competition with zinc(II) and cadmium(II) ions.
    Andersson I; Maret W; Zeppezauer M; Brown RD; Koenig SH
    Biochemistry; 1981 Jun; 20(12):3433-8. PubMed ID: 7020752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nuclear magnetic relaxation studies of the role of the metal ion in Mn2(+)-substituted aminoacylase I.
    Heese D; Berger S; Röhm KH
    Eur J Biochem; 1990 Feb; 188(1):175-80. PubMed ID: 2318199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic mechanism of glyoxalase I: a theoretical study.
    Himo F; Siegbahn PE
    J Am Chem Soc; 2001 Oct; 123(42):10280-9. PubMed ID: 11603978
    [TBL] [Abstract][Full Text] [Related]  

  • 47. X-ray absorption studies of the Zn2+ site of glyoxalase I.
    Garcia-Iniguez L; Powers L; Chance B; Sellin S; Mannervik B; Mildvan AS
    Biochemistry; 1984 Feb; 23(4):685-9. PubMed ID: 6712919
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A simplified method for the purification of human red blood cell glyoxalase. I. Characteristics, immunoblotting, and inhibitor studies.
    Allen RE; Lo TW; Thornalley PJ
    J Protein Chem; 1993 Apr; 12(2):111-9. PubMed ID: 8489699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diffusion-dependent kinetic properties of glyoxalase I and estimates of the steady-state concentrations of glyoxalase-pathway intermediates in glycolyzing erythrocytes.
    Shih MJ; Edinger JW; Creighton DJ
    Eur J Biochem; 1997 Mar; 244(3):852-7. PubMed ID: 9108256
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glyoxalase 2 deficiency in the erythrocytes of a horse: 1H NMR studies of enzyme kinetics and transport of S-lactoylglutathione.
    Rae C; Board PG; Kuchel PW
    Arch Biochem Biophys; 1991 Dec; 291(2):291-9. PubMed ID: 1952942
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Separation of the isoenzymes of glyoxalase I from human red blood cells by electrophoresis and isoelectric focusing on polyacrylamide gel and by ion exchange chromatography.
    Uotila L; Koivusalo M
    Acta Chem Scand B; 1979; 34(1):63-8. PubMed ID: 94203
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional residues on the enzyme active site of glyoxalase I from bovine brain.
    Lupidi G; Bollettini M; Venardi G; Marmocchi F; Rotilio G
    Prep Biochem Biotechnol; 2001 Aug; 31(3):317-29. PubMed ID: 11513095
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proceedings: Human erythrocyte glyoxalase I polymorphism.
    Bagster IA; Parr CW
    J Physiol; 1976 Mar; 256(1):56P-57P. PubMed ID: 933064
    [No Abstract]   [Full Text] [Related]  

  • 54. Isolation and kinetic analysis of the multiple forms of glyoxalase-I from human erythrocytes.
    Schimandle CM; Vander Jagt DL
    Arch Biochem Biophys; 1979 Jul; 195(2):261-8. PubMed ID: 475391
    [No Abstract]   [Full Text] [Related]  

  • 55. Antitumor activity of S-(p-bromobenzyl)glutathione diesters in vitro: a structure-activity study.
    Thornalley PJ; Ladan MJ; Ridgway SJ; Kang Y
    J Med Chem; 1996 Aug; 39(17):3409-11. PubMed ID: 8765525
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Paramagnetic carbon-13 NMR relaxation studies on the kinetics and mechanism of the HCO3-/CO2 exchange catalyzed by manganese(II) human carbonic anhydrase I.
    Led JJ; Neesgaard E
    Biochemistry; 1987 Jan; 26(1):183-92. PubMed ID: 3103677
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proton and deuteron nuclear magnetic relaxation dispersion studies of Ca2+-Mn2+-concanavalin A: evidence for two classes of exchanging water molecules.
    Koenig SH; Brown RD; Brewer CF
    Biochemistry; 1985 Sep; 24(19):4980-4. PubMed ID: 4074669
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glyoxalase I from human erythrocytes.
    Mannervik B; Aronsson AC; Tibbelin G
    Methods Enzymol; 1982; 90 Pt E():535-41. PubMed ID: 7154966
    [No Abstract]   [Full Text] [Related]  

  • 59. Enzyme chemistry of dithiohemiacetals: synthesis and characterization of S-D-dithiomandeloylglutathione as an alternate substrate for glyoxalase I.
    Li J; Guha MK; Creighton DJ
    Biochem Biophys Res Commun; 1991 Dec; 181(2):657-63. PubMed ID: 1755849
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and kinetic evaluation of S- and N-substituted cysteinylglycines as inhibitors of glyoxalase I.
    Lyon PA; Vince R
    J Med Chem; 1977 Jan; 20(1):77-88. PubMed ID: 833829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.