These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7138844)

  • 21. Ribose recognition by ribonuclease T1: difference spectral binding studies with guanosine and deoxyguanosine.
    Walz FG
    Biochemistry; 1976 Oct; 15(20):4446-50. PubMed ID: 9971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ribonuclease T1 is stabilized by cation and anion binding.
    Pace CN; Grimsley GR
    Biochemistry; 1988 May; 27(9):3242-6. PubMed ID: 3134046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of cytidine 3'-monophosphate and uridine 3'-monophosphate with ribonuclease a at the denaturation temperature.
    Schwarz FP
    Biochemistry; 1988 Nov; 27(22):8429-36. PubMed ID: 3242592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification of bovine pancreatic ribonuclease A with the site-specific reagent 4-arsono-2-nitrofluorobenzene. Spectrophotometric titration of arsononitrophenyl ribonuclease A derivatives.
    Hummel CF; Gerber BR; Babich AM; Avitable MJ; Carty RP
    Biochemistry; 1981 Aug; 20(17):4843-52. PubMed ID: 6271172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Valence and anion binding of bovine ribonuclease A between pH 6 and 8.
    Moody TP; Kingsbury JS; Durant JA; Wilson TJ; Chase SF; Laue TM
    Anal Biochem; 2005 Jan; 336(2):243-52. PubMed ID: 15620889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical modification of ribonuclease A with 4-arsono-2-nitrofluorobenzene.
    Hummel CF; Gerber BR; Carty RP
    Int J Pept Protein Res; 1984 Jul; 24(1):1-13. PubMed ID: 6434458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pH dependence of hydrogen exchange in proteins.
    Matthew JB; Richards FM
    J Biol Chem; 1983 Mar; 258(5):3039-44. PubMed ID: 6826549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatic effects in myoglobin. Application of the modified Tanford-Kirkwood theory to myoglobins from horse, California grey whale, harbor seal, and California sea lion.
    Shire SJ; Hanania GI; Gurd FR
    Biochemistry; 1975 Apr; 14(7):1352-8. PubMed ID: 235950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overexpression, biophysical characterization, and crystallization of ribonuclease I from Escherichia coli, a broad-specificity enzyme in the RNase T2 family.
    Padmanabhan S; Zhou K; Chu CY; Lim RW; Lim LW
    Arch Biochem Biophys; 2001 Jun; 390(1):42-50. PubMed ID: 11368513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interaction of DNA with pancreatic ribonuclease A.
    Sekine H; Nakano E; Sakaguchi K
    Biochim Biophys Acta; 1969 Jan; 174(1):202-10. PubMed ID: 5766292
    [No Abstract]   [Full Text] [Related]  

  • 31. Evidence for the presence of two kinetically distinct active forms of ribonuclease T2. The pH dependence of the steady-state kinetic parameter, kcat, for transphosphorylation of both a natural and a synthetic substrate.
    Yasuda Y; Inoue Y
    Eur J Biochem; 1981 Feb; 114(2):229-34. PubMed ID: 6260492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetics of charge-charge interactions in proteins.
    Gilson MK; Honig BH
    Proteins; 1988; 3(1):32-52. PubMed ID: 3287370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Refinement of the crystal structure of ribonuclease S. Comparison with and between the various ribonuclease A structures.
    Kim EE; Varadarajan R; Wyckoff HW; Richards FM
    Biochemistry; 1992 Dec; 31(49):12304-14. PubMed ID: 1463719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of pKa values and titration shifts in the cytotoxic ribonuclease alpha-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function.
    Pérez-Cañadillas JM; Campos-Olivas R; Lacadena J; Martínez del Pozo A; Gavilanes JG; Santoro J; Rico M; Bruix M
    Biochemistry; 1998 Nov; 37(45):15865-76. PubMed ID: 9843392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The specificity of the interaction of bovine pancreatic ribonuclease A with natural and halogenated purine nucleotides.
    Pares X; Arus C; Llorens R; Cuchillo CM
    Biochem J; 1978 Oct; 175(1):21-7. PubMed ID: 736894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A billion-fold range in acidity for the solvent-exposed amides of Pyrococcus furiosus rubredoxin.
    Anderson JS; Hernández G; Lemaster DM
    Biochemistry; 2008 Jun; 47(23):6178-88. PubMed ID: 18479148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionization properties of titratable groups in ribonuclease T1. II. Electrostatic analysis.
    Koumanov A; Spitzner N; Rüterjans H; Karshikoff A
    Eur Biophys J; 2001 Jul; 30(3):198-206. PubMed ID: 11508839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-induced denaturation of ribonuclease S: a thermodynamic study.
    Catanzano F; Giancola C; Graziano G; Barone G
    Biochemistry; 1996 Oct; 35(41):13378-85. PubMed ID: 8873605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The nature of the allosteric interactions of ribonuclease and its ligands.
    Walker EJ; Ralston GB; Darvey IG
    Biochem J; 1978 Jul; 173(1):1-4. PubMed ID: 28730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation of the electronic and steric environments of tyrosyl residues in ribonuclease A and Erwinia carotovora L-asparaginase through fluorescence quenching by caesium, iodide and phosphate ions.
    Homer RB; Allsopp SR
    Biochim Biophys Acta; 1976 Jun; 434(2):297-310. PubMed ID: 986170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.