These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7138875)

  • 1. Glycosylation of human hemoglobin A. Kinetics and mechanisms studied by isoelectric focusing.
    Mortensen HB; Christophersen C
    Biochim Biophys Acta; 1982 Sep; 707(1):154-63. PubMed ID: 7138875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucosylation of human haemoglobin a in red blood cells studied in vitro. Kinetics of the formation and dissociation of haemoglobin A1c.
    Mortensen HB; Christophersen C
    Clin Chim Acta; 1983 Nov; 134(3):317-26. PubMed ID: 6640948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Speculation of hemoglobin A
    Guo Z; Luo F; Li S; Fan L; Wu Y; Cao C
    Se Pu; 2021 Nov; 39(11):1273-1278. PubMed ID: 34677023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of isoelectric focusing, ion exchange, and affinity chromatography to labile glycated hemoglobin.
    Mullins RE; Austin GE
    Clin Chem; 1986 Aug; 32(8):1460-3. PubMed ID: 3731438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of glutathione-HbA1c on HbA1c measurement in diabetes diagnosis via array isoelectric focusing, liquid chromatography, mass spectrometry and ELISA.
    Li S; Guo CG; Chen L; Yin XY; Wu YX; Fan LY; Fan HZ; Cao CX
    Talanta; 2013 Oct; 115():323-8. PubMed ID: 24054598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycated hemoglobin. Reaction and biokinetic studies. Clinical application of hemoglobin A1c in the assessment of metabolic control in children with diabetes mellitus.
    Mortensen HB
    Dan Med Bull; 1985 Dec; 32(6):309-28. PubMed ID: 3908003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of storage conditions on ion exchange and affinity chromatographic assays for glycated hemoglobin.
    Papadea C; Austin GE; Mullins RE
    Clin Biochem; 1984 Oct; 17(5):296-301. PubMed ID: 6499159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of hemoglobin Aic and related minor hemoglobin by erythrocytes. In vitro study of regulation.
    Spicer KM; Allen RC; Hallett D; Buse MG
    J Clin Invest; 1979 Jul; 64(1):40-8. PubMed ID: 36412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity of the haemoglobin-A1c-band in isoelectric focussing.
    Welinder BS; Svendsen PA
    Diabetologia; 1980 Nov; 19(5):465-7. PubMed ID: 7450320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oxidative denitrosylation mechanism and nitric oxide release from human fetal and adult hemoglobin, an experimentally based model simulation study.
    Salhany JM
    Blood Cells Mol Dis; 2013 Jan; 50(1):8-19. PubMed ID: 22981699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Measurement of Haemoglobin A1c by isoelectric focussing in diabetic patients.
    Stickland MH; Perkins CM; Wales JK
    Diabetologia; 1982 May; 22(5):315-7. PubMed ID: 7047279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of unstable hemoglobin A1c complexes by dynamic capillary isoelectric focusing.
    Hempe JM; McGehee AM; Hsia D; Chalew SA
    Anal Biochem; 2012 May; 424(2):149-55. PubMed ID: 22370282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the determination of glucosylated haemoglobin by isoelectric focusing and cation-exchange chromatography on minicolumns.
    Hjelm Poulsen J; Jespersen J
    Scand J Clin Lab Invest; 1986 May; 46(3):259-63. PubMed ID: 2424077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of abnormal hemoglobins on a new microcolumn method to determine hemoglobin A1c.
    Davis JL; Bryan B; Simpkins H
    Ann Clin Lab Sci; 1985; 15(1):71-5. PubMed ID: 2578764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of glycosylated haemoglobin by isoelectric focusing in non-linear pH gradients.
    Cossu G; Manca M; Pirastru MG; Bullita R; Bianchi Bosisio A; Righetti PG
    J Chromatogr; 1984 Apr; 307(1):103-10. PubMed ID: 6725476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A glucose-containing fraction extracted from the young erythrocyte membrane is capable of transferring glucose to hemoglobin in vitro.
    Gillery P; Maquart FX; Gattegno L; Randoux A; Cornillot P; Borel JP
    Diabetes; 1982 Apr; 31(4 Pt 1):371-4. PubMed ID: 7152131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of hemoglobin A1c measurement by cation exchange liquid chromatography. Evaluation of a Mono S column method.
    Koskinen LK
    Clin Chim Acta; 1996 Sep; 253(1-2):159-69. PubMed ID: 8879846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of glycosylated haemoglobins using immobilized phenylboronic acid. Effect of ligand concentration, column operating conditions, and comparison with ion-exchange and isoelectric-focusing.
    Middle FA; Bannister A; Bellingham AJ; Dean PD
    Biochem J; 1983 Mar; 209(3):771-9. PubMed ID: 6870791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of hemoglobin ligands on the kinetics of human hemoglobin A1c formation.
    Lowrey CH; Lyness SJ; Soeldner JS
    J Biol Chem; 1985 Sep; 260(21):11611-8. PubMed ID: 3930480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of glycosylated hemoglobin by boronate affinity chromatography.
    Flückiger R; Woodtli T; Berger W
    Diabetes; 1984 Jan; 33(1):73-6. PubMed ID: 6690345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.