These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 7138877)
1. Interaction of Ni2+ with the tubulin-microtubule system. Roychaudhury S; Banerjee A; Bhattacharyya B Biochim Biophys Acta; 1982 Sep; 707(1):46-9. PubMed ID: 7138877 [TBL] [Abstract][Full Text] [Related]
2. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site. Raghav D; Ashraf SM; Mohan L; Rathinasamy K Biochemistry; 2017 May; 56(20):2594-2611. PubMed ID: 28459539 [TBL] [Abstract][Full Text] [Related]
3. Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity. Gupta K; Panda D Biochemistry; 2002 Oct; 41(43):13029-38. PubMed ID: 12390030 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and steady-state analysis of microtubules in the presence of colchicine. Deery WJ; Weisenberg RC Biochemistry; 1981 Apr; 20(8):2316-24. PubMed ID: 7236603 [TBL] [Abstract][Full Text] [Related]
5. The role of the B-ring of colchicine on taxol-induced tubulin polymerization. Bhattacharyya B; Ghoshchaudhuri G; Maity S; Biswas BB Ann N Y Acad Sci; 1986; 466():791-3. PubMed ID: 2873782 [No Abstract] [Full Text] [Related]
6. Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine. Mohan L; Raghav D; Ashraf SM; Sebastian J; Rathinasamy K Biomed Pharmacother; 2018 Sep; 105():506-517. PubMed ID: 29883946 [TBL] [Abstract][Full Text] [Related]
7. The natural naphthoquinone plumbagin exhibits antiproliferative activity and disrupts the microtubule network through tubulin binding. Acharya BR; Bhattacharyya B; Chakrabarti G Biochemistry; 2008 Jul; 47(30):7838-45. PubMed ID: 18597479 [TBL] [Abstract][Full Text] [Related]
8. Characterization and in vitro polymerization of Tetrahymena tubulin. Maekawa S; Sakai H J Biochem; 1978 Apr; 83(4):1065-75. PubMed ID: 659381 [TBL] [Abstract][Full Text] [Related]
9. Kinetics and steady state dynamics of tubulin addition and loss at opposite microtubule ends: the mechanism of action of colchicine. Wilson L; Farrell KW Ann N Y Acad Sci; 1986; 466():690-708. PubMed ID: 3460444 [No Abstract] [Full Text] [Related]
10. Inhibition of bovine brain microtubule assembly in vitro by stypoldione. O'Brien ET; Jacobs RS; Wilson L Mol Pharmacol; 1983 Nov; 24(3):493-9. PubMed ID: 6633509 [TBL] [Abstract][Full Text] [Related]
11. Colchicine binding to tubulin from brain homogenates in the presence of sugars, glycols and metal ions. Effect of nickel ions on the tubulin solubility. Beron W; Bertini F Microsc Electron Biol Celular; 1990; 14(2):147-57. PubMed ID: 2134907 [TBL] [Abstract][Full Text] [Related]
12. Nickel (Ni2+) enhancement of alpha-tubulin acetylation in cultured 3T3 cells. Li W; Zhao Y; Chou IN Toxicol Appl Pharmacol; 1996 Oct; 140(2):461-70. PubMed ID: 8887464 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of colchicine-dimer addition to microtubule ends: implications for the microtubule polymerization mechanism. Margolis RL; Rauch CT; Wilson L Biochemistry; 1980 Nov; 19(24):5550-7. PubMed ID: 7459331 [No Abstract] [Full Text] [Related]
15. Kainate reversibly aggregates brain tubulin in vitro. López-Colomé AM; Casas A Biochem Biophys Res Commun; 1984 Aug; 122(3):925-31. PubMed ID: 6477571 [TBL] [Abstract][Full Text] [Related]
16. Effects of tertiary amine local anesthetics on the assembly and disassembly of brain microtubules in vitro. Genna JM; Coffe G; Pudles J Eur J Biochem; 1980 Sep; 110(2):457-64. PubMed ID: 7439170 [TBL] [Abstract][Full Text] [Related]
17. Effects of the principal hydroxy-metabolites of benzene on microtubule polymerization. Irons RD; Neptun DA Arch Toxicol; 1980 Oct; 45(4):297-305. PubMed ID: 7447702 [TBL] [Abstract][Full Text] [Related]
18. Calcium and gadolinium ions stimulate the GTPase activity of purified chicken brain tubulin through a conformational change. Soto C; Rodríguez PH; Monasterio O Biochemistry; 1996 May; 35(20):6337-44. PubMed ID: 8639578 [TBL] [Abstract][Full Text] [Related]
19. Microtubule-associated proteins-dependent colchicine stability of acetylated cold-labile brain microtubules from the Atlantic cod, Gadus morhua. Billger M; Strömberg E; Wallin M J Cell Biol; 1991 Apr; 113(2):331-8. PubMed ID: 2010465 [TBL] [Abstract][Full Text] [Related]
20. Release of C-terminal tyrosine from tubulin and microtubules at steady state. Arce CA; Barra HS Biochem J; 1985 Feb; 226(1):311-7. PubMed ID: 3977875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]