BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7139915)

  • 1. Kinetic method having a linear range for substrate concentrations that exceed Michaelis-Menten constants.
    Hamilton SD; Pardue HL
    Clin Chem; 1982 Dec; 28(12):2359-65. PubMed ID: 7139915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F; Zhu XY; Wang YM; Zuo YP
    J Biochem Biophys Methods; 2005 Jan; 62(1):13-24. PubMed ID: 15656940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a kinetic uricase method for serum uric acid assay by predicting background absorbance of uricase reaction solution with an integrated method.
    Liao F; Zhao YS; Zhao LN; Tao J; Zhu XY; Liu L
    J Zhejiang Univ Sci B; 2006 Jun; 7(6):497-502. PubMed ID: 16691645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodological principles in the enzymatic determination of substrates illustrated by the measurement of uric acid.
    Moss DW
    Clin Chim Acta; 1980 Aug; 105(3):351-60. PubMed ID: 7408195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase.
    Bardsley WG; Leff P; Kavanagh J; Waight RD
    Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a uricase from Bacillus fastidious A.T.C.C. 26904 and its application to serum uric acid assay by a patented kinetic uricase method.
    Zhao Y; Zhao L; Yang G; Tao J; Bu Y; Liao F
    Biotechnol Appl Biochem; 2006 Sep; 45(Pt 2):75-80. PubMed ID: 16689679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the linear range for kinetic reactions by considering the relationship between enzyme activity of the reagent and measurement intervals.
    Goren MP; Davis JE
    Clin Chem; 1986 Nov; 32(11):2021-5. PubMed ID: 3779946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer.
    Nakaminami T; Ito S; Kuwabata S; Yoneyama H
    Anal Chem; 1999 May; 71(10):1928-34. PubMed ID: 10361492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic substrate quantification by fitting the enzyme reaction curve to the integrated Michaelis-Menten equation.
    Liao F; Tian KC; Yang X; Zhou QX; Zeng ZC; Zuo YP
    Anal Bioanal Chem; 2003 Mar; 375(6):756-62. PubMed ID: 12664174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation of lactate by a kinetic method with an extended range of linearity and low dependence on experimental variables.
    Hamilton SD; Pardue HL
    Clin Chem; 1984 Feb; 30(2):226-9. PubMed ID: 6692526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A steady-state kinetic investigation of the uricase reaction mechanism.
    Pitts OM; Priest DG
    Arch Biochem Biophys; 1974 Jul; 163(1):359-66. PubMed ID: 4850315
    [No Abstract]   [Full Text] [Related]  

  • 12. Fitting enzyme-kinetic data to V/K.
    Northrop DB
    Anal Biochem; 1983 Jul; 132(2):457-61. PubMed ID: 6625178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CuO thin film based uric acid biosensor with enhanced response characteristics.
    Jindal K; Tomar M; Gupta V
    Biosens Bioelectron; 2012; 38(1):11-8. PubMed ID: 22647533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of xanthine oxidase for a specific and sensitive fluorimetric determination of 6-mercaptopurine in serum.
    Tawa R; Takeshima S; Hirose S
    Biochem Med; 1984 Dec; 32(3):303-10. PubMed ID: 6549126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic characterization of intermediates in the urate oxidase reaction.
    Kahn K; Tipton PA
    Biochemistry; 1998 Aug; 37(33):11651-9. PubMed ID: 9709003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new multi-wavelength model-based method for determination of enzyme kinetic parameters.
    Sorouraddin MH; Amini K; Naseri A; Vallipour J; Hanaee J; Rashidi MR
    J Biosci; 2010 Sep; 35(3):395-403. PubMed ID: 20826949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles.
    Numnuam A; Thavarungkul P; Kanatharana P
    Anal Bioanal Chem; 2014 Jun; 406(15):3763-72. PubMed ID: 24718436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of dissolved O2 metric uric acid biosensor using uricase epoxy resin biocomposite membrane.
    Arora J; Nandwani S; Bhambi M; Pundir CS
    Anal Chim Acta; 2009 Aug; 647(2):195-201. PubMed ID: 19591705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.