These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 7140376)

  • 1. Decreased tumorigenicity of Chinese hamster cells after fusion with tumorigenic mouse myeloid leukemia cells.
    Geurts van Kessel AH; de Both NJ; Hagemeijer A
    Cytogenet Cell Genet; 1982; 34(3):253-6. PubMed ID: 7140376
    [No Abstract]   [Full Text] [Related]  

  • 2. Assignment of ADA, ITPA, AK1, and AK2 to Chinese hamster chromosomes. Genetic and structural evidence for the conservation of mammalian autosomal synteny.
    Stallings RL; Siciliano MJ
    J Hered; 1982; 73(6):399-404. PubMed ID: 7153494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased tumorigenicity of rodent cells after fusion with leukocytes from normal and leukemic donors.
    Geurts van Kessel AH; den Boer WC; van Agthoven AJ; Hagemeijer A
    Somatic Cell Genet; 1981 Nov; 7(6):645-56. PubMed ID: 6948415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of transformation and tumorigenicity in interspecies hybrids of human SV40-transformed and mouse 3T3 cell lines.
    Howell N
    Cytogenet Cell Genet; 1982; 34(3):215-29. PubMed ID: 6291863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of tumorigenicity in hybrids of tumorigenic Chinese hamster cells and diploid mouse fibroblasts: dependence on the presence of at least three different mouse chromosomes and independence of hamster genome dosage.
    Schäfer R; Hoffmann H; Willecke K
    Cancer Res; 1983 May; 43(5):2240-6. PubMed ID: 6831446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of tumorigenicity in somatic cell hybrids. II. Human chromosomes implicated as suppressors of tumorigenicity in hybrids with Chinese hamster ovary cells.
    Klinger HP; Shows TB
    J Natl Cancer Inst; 1983 Sep; 71(3):559-69. PubMed ID: 6577230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of drug sensitivity and tumorigenicity in intraspecies hybrids between 9-hydroxyellipticine-sensitive and -resistant cells.
    Rémy JJ; Belehradek J; Jacquemin-Sablon A
    Cancer Res; 1984 Oct; 44(10):4587-93. PubMed ID: 6467214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene mapping in the Chinese hamster and conservation of syntenic groups and Q-band homologies between Chinese hamster and mouse chromosomes.
    Satoh H; Yoshida MC
    Cytogenet Cell Genet; 1985; 39(4):285-91. PubMed ID: 3863747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of chromosome segregation in Chinese hamster x mouse cell hybrids between permanent cell lines and thymus cells.
    Lasserre C; Jami J; Aviles D
    J Cell Physiol; 1980 Sep; 104(3):403-13. PubMed ID: 7419611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of DNA synthesis in polyploid mammalian cells.
    Graves JA; McMillan J
    J Cell Physiol; 1984 Nov; 121(2):409-14. PubMed ID: 6490731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of both parental mitochondrial DNA species in mouse-Chinese hamster somatic cell hybrids.
    Zuckerman SH; Solus JF; Gillespie FP; Eisenstadt JM
    Somat Cell Mol Genet; 1984 Jan; 10(1):85-91. PubMed ID: 6583855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of tumorigenesis: IX Suppression of anchorage independence in hybrids between transformed hamster cell lines.
    Marshall CJ; Sager R
    Somatic Cell Genet; 1981 Nov; 7(6):713-23. PubMed ID: 7323949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of transformed and malignant phenotypes in somatic cell hybrids between tumorigenic Chinese hamster cells and diploid mouse fibroblasts.
    Schäfer R; Doehmer J; Drüge PM; Rademacher I; Willecke K
    Cancer Res; 1981 Mar; 41(3):1214-21. PubMed ID: 7459862
    [No Abstract]   [Full Text] [Related]  

  • 14. An improved fixation method for chromosome preparation of Chinese hamster, Chinese hamster-human hybrid, and mouse cell lines.
    Korthof G
    Cytogenet Cell Genet; 1986; 41(3):181-4. PubMed ID: 3956269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion and hybridization of marsupial and eutherian cells. VI. Hybridization.
    Hope RM; Graves JA
    Aust J Biol Sci; 1978 Oct; 31(5):527-43. PubMed ID: 751630
    [No Abstract]   [Full Text] [Related]  

  • 16. Assignment of TK1 encoding thymidine kinase to Syrian hamster chromosome 9 by microcell-mediated chromosome transfer.
    Islam K; Islam MQ
    Cytogenet Cell Genet; 1994; 66(3):177-80. PubMed ID: 8125017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxanthine and thymidine compete for transport in Chinese hamster fibroblasts.
    Slaughter RS; Fenwick RG; Barnes EM
    Arch Biochem Biophys; 1981 Oct; 211(1):494-9. PubMed ID: 7305383
    [No Abstract]   [Full Text] [Related]  

  • 18. DNA methylation and the control of gene expression on the human X chromosome.
    Shapiro LJ; Mohandas T
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 2():631-7. PubMed ID: 6190613
    [No Abstract]   [Full Text] [Related]  

  • 19. X chromosome control of chromosome segregation in mouse/hamster hybrid cell populations.
    Pravtcheva DD; Ruddle FH
    Ann N Y Acad Sci; 1982 Dec; 397():249-55. PubMed ID: 6961844
    [No Abstract]   [Full Text] [Related]  

  • 20. Targeted integration of a dominant neo(R) marker into a 2- to 3-Mb human minichromosome and transfer between cells.
    Au HC; Mascarello JT; Scheffler IE
    Cytogenet Cell Genet; 1999; 86(3-4):194-203. PubMed ID: 10575205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.