These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7140992)

  • 1. Phosphorescence of tryptophan from parvalbumin and actin in liquid solution.
    Horie T; Vanderkooi JM
    FEBS Lett; 1982 Oct; 147(1):69-73. PubMed ID: 7140992
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative study of physiochemical properties of two pike parvalbumins by means of their intrinsic tyrosyl and phenylalanyl fluorescence.
    Permyakov EA; Medvedkin VN; Kalinichenko LP; Burstein EA
    Arch Biochem Biophys; 1983 Nov; 227(1):9-20. PubMed ID: 6639084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of neuronal parvalbumin by high-performance liquid chromatography. Characterization and comparison with muscle parvalbumin.
    Berchtold MW; Wilson KJ; Heizmann CW
    Biochemistry; 1982 Dec; 21(25):6552-7. PubMed ID: 6817792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan phosphorescence of G-actin and F-actin.
    Strambini GB; Lehrer SS
    Eur J Biochem; 1991 Feb; 195(3):645-51. PubMed ID: 1999187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of parvalbumin from chicken leg-muscle.
    Strehler EE; Eppenberger HM; Heizmann CW
    FEBS Lett; 1977; 78(1):127-33. PubMed ID: 68891
    [No Abstract]   [Full Text] [Related]  

  • 6. Excited states of tryptophan in cod parvalbumin. Identification of a short-lived emitting triplet state at room temperature.
    Sudhakar K; Phillips CM; Williams SA; Vanderkooi JM
    Biophys J; 1993 May; 64(5):1503-11. PubMed ID: 8324187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic fluorescence spectra of a tryptophan-containing parvalbumin as a function of thermal, pH and urea denaturation.
    Permyakov EA; Yarmolenko VV; Burstein EA; Gerday C
    Biophys Chem; 1982 Apr; 15(1):19-26. PubMed ID: 7074205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble calcium-binding proteins: parvalbumins and calmodulin from eel skeletal muscle.
    Dubois I; Gerday C
    Comp Biochem Physiol B; 1990; 95(2):381-5. PubMed ID: 2109671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study of conformation transitions in proteins by tryptophan fluorescence and phosphorescence at low temperatures].
    Permiakov EA; Deĭkus GIu
    Mol Biol (Mosk); 1995; 29(2):339-44. PubMed ID: 7783738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative properties of vertebrate parvalbumins.
    Blum HE; Lehky P; Kohler L; Stein EA; Fischer EH
    J Biol Chem; 1977 May; 252(9):2834-8. PubMed ID: 856805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunochemical quantification of sarcoplasmic reticulum Ca-ATPase, of calsequestrin and of parvalbumin in rabbit skeletal muscles of defined fiber composition.
    Leberer E; Pette D
    Eur J Biochem; 1986 May; 156(3):489-96. PubMed ID: 2938950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amino acid sequence of the parvalbumin from the very fast swimbladder muscle of the toadfish (Opsanus tau).
    Gerday C; Collin S; Gerardin-Otthiers N
    Comp Biochem Physiol B; 1989; 93(1):49-55. PubMed ID: 2752733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of parvalbumin isotypes by preparative HPLC techniques.
    Ross C; Hevener S; Clark R; Hartmann JX; Mari F
    Prep Biochem Biotechnol; 1998 Feb; 28(1):49-60. PubMed ID: 9516642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Nature of the orientation of the tryptophan residues in the myosin and actin from striated muscle fiber].
    Kirillina VP; Borovikov IuS; Khaitlina SIu; Bogdanova MS
    Tsitologiia; 1979 Feb; 21(2):171-5. PubMed ID: 432955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary structure of parvalbumin from rat skeletal muscle.
    Berchtold MW; Heizmann CW; Wilson KJ
    Eur J Biochem; 1982 Oct; 127(2):381-9. PubMed ID: 6754379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some aspects of studies of thermal transitions in proteins by means of their intrinsic fluorescence.
    Permyakov EA; Burstein EA
    Biophys Chem; 1984 May; 19(3):265-71. PubMed ID: 6722276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorescence/microwave double-resonance spectra of tryptophan perturbed by methylmercury(II).
    Davis JM; Maki AH
    Proc Natl Acad Sci U S A; 1982 Jul; 79(14):4313-6. PubMed ID: 6956860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lifetime and quenching of tryptophan fluorescence in whiting parvalbumin.
    Castelli F; White HD; Forster LS
    Biochemistry; 1988 May; 27(9):3366-72. PubMed ID: 3390437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium and potassium binding to parvalbumins measured by means of intrinsic protein fluorescence.
    Permyakov EA; Kalinichenko LP; Medvedkin VN; Burstein EA; Gerday C
    Biochim Biophys Acta; 1983 Dec; 749(2):185-91. PubMed ID: 6652098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stopped-flow kinetic studies of metal ion dissociation or exchange in a tryptophan-containing parvalbumin.
    Breen PJ; Johnson KA; Horrocks WD
    Biochemistry; 1985 Sep; 24(19):4997-5004. PubMed ID: 4074672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.