These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 7142040)
1. Validity of the Liouville--Green (or WKB) method for cochlear mechanics. de Boer E; Viergever MA Hear Res; 1982 Oct; 8(2):131-55. PubMed ID: 7142040 [TBL] [Abstract][Full Text] [Related]
2. Wave propagation and dispersion in the cochlea. de Boer E; Viergever MA Hear Res; 1984 Feb; 13(2):101-12. PubMed ID: 6715260 [TBL] [Abstract][Full Text] [Related]
3. The mode-coupling Liouville-Green approximation for a two-dimensional cochlear model. Watts L J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2266-71. PubMed ID: 11108367 [TBL] [Abstract][Full Text] [Related]
4. Solving cochlear mechanics problems with higher-order differential equations. de Boer E; van Bienema E J Acoust Soc Am; 1982 Nov; 72(5):1427-34. PubMed ID: 7175030 [TBL] [Abstract][Full Text] [Related]
5. A cylindrical cochlea model: the bridge between two and three dimensions. de Boer E Hear Res; 1980 Aug; 3(2):109-31. PubMed ID: 7419481 [TBL] [Abstract][Full Text] [Related]
6. Quantitative validation of cochlear models using the Liouville-Green approximation. Viergever MA; Diependaal RJ Hear Res; 1986; 21(1):1-15. PubMed ID: 3957793 [TBL] [Abstract][Full Text] [Related]
7. Power amplification in an active model of the cochlea--short-wave case. de Boer E J Acoust Soc Am; 1983 Feb; 73(2):577-9. PubMed ID: 6841797 [TBL] [Abstract][Full Text] [Related]
8. An analysis of a low-frequency model of the cochlea. Holmes MH J Acoust Soc Am; 1980 Aug; 68(2):482-8. PubMed ID: 7419808 [TBL] [Abstract][Full Text] [Related]
9. Deep-water waves in the cochlea. de Boer E Hear Res; 1980 Aug; 3(2):97-108. PubMed ID: 7419485 [TBL] [Abstract][Full Text] [Related]
10. Finite difference solution of a two-dimensional mathematical model of the cochlea. Neely ST J Acoust Soc Am; 1981 May; 69(5):1386-91. PubMed ID: 7240568 [TBL] [Abstract][Full Text] [Related]
11. Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions. Shera CA; Tubis A; Talmadge CL J Acoust Soc Am; 2005 Jul; 118(1):287-313. PubMed ID: 16119350 [TBL] [Abstract][Full Text] [Related]
12. Forward and reverse waves in the one-dimensional model of the cochlea. de Boer E; Kaernbach C; König P; Schillen T Hear Res; 1986; 23(1):1-7. PubMed ID: 3733549 [TBL] [Abstract][Full Text] [Related]
13. Forward and reverse waves in nonclassical models of the cochlea. de Boer E J Acoust Soc Am; 2007 May; 121(5 Pt1):2819-21. PubMed ID: 17550180 [TBL] [Abstract][Full Text] [Related]
14. A model and analysis for the nonlinear amplification of waves in the cochlea. Fessel K; Holmes MH Math Biosci; 2018 Jul; 301():10-20. PubMed ID: 29382493 [TBL] [Abstract][Full Text] [Related]
15. Comparison of WKB calculations and experimental results for three-dimensional cochlear models. Steele CR; Taber LA J Acoust Soc Am; 1979 Apr; 65(4):1007-18. PubMed ID: 447914 [TBL] [Abstract][Full Text] [Related]
16. Acoustical inverse problem for the cochlea. Sondhi MM J Acoust Soc Am; 1981 Feb; 69(2):500-4. PubMed ID: 7462472 [TBL] [Abstract][Full Text] [Related]
17. Point-impedance characterization of the basilar membrane in a three-dimensional cochlea model. Diependaal RJ; Viergever MA Hear Res; 1983 Jul; 11(1):33-40. PubMed ID: 6885647 [TBL] [Abstract][Full Text] [Related]
18. Cochlear macromechanics: time domain solutions. Allen JB; Sondhi MM J Acoust Soc Am; 1979 Jul; 66(1):123-32. PubMed ID: 489828 [TBL] [Abstract][Full Text] [Related]