These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 7142128)
1. Essential roles of alkylammonium and alkylguanidinium ions in trypsin-catalyzed hydrolysis of acetylglycine esters: enhancement of catalytic efficiency analyzed by the use of "inverse substrates". Tanizawa K; Nakano M; Lawson WB; Kanaoka Y J Biochem; 1982 Sep; 92(3):945-51. PubMed ID: 7142128 [TBL] [Abstract][Full Text] [Related]
2. Behavior of trypsin and related enzymes toward amidinophenyl esters. Nozawa M; Tanizawa K; Kanaoka Y; Moriya H J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906 [TBL] [Abstract][Full Text] [Related]
3. Induced activation in the deacylation step of tryptic hydrolysis. An application of "inverse substrates" to mechanistic studies of the enzyme. Tanizawa K; Kasaba Y; Kanaoka Y J Biochem; 1980 Feb; 87(2):417-27. PubMed ID: 7358646 [TBL] [Abstract][Full Text] [Related]
4. "Inverse substrates" for trypsin-like enzymes. Nozawa M; Tanizawa K; Kanaoka Y J Pharmacobiodyn; 1980 Apr; 3(4):213-9. PubMed ID: 6451682 [TBL] [Abstract][Full Text] [Related]
5. THE MECHANISM OF THE SPECIFICITY OF TRYPSIN CATALYSIS. 3. ACTIVATION OF THE CATALYTIC SITE OF TRYPSIN BY ALKYLAMMONIUM IONS IN THE HYDROLYSIS OF ACETYLGLYCINE ETHYL ESTER. INAGAMI T; MURACHI T J Biol Chem; 1964 May; 239():1395-401. PubMed ID: 14193830 [No Abstract] [Full Text] [Related]
6. Trypsin-catalyzed peptide synthesis with m-guanidinophenyl and m-(guanidinomethyl)phenyl esters as acyl donor component. Sekizaki H; Itoh K; Toyota E; Tanizawa K Amino Acids; 1999; 17(3):285-91. PubMed ID: 10582127 [TBL] [Abstract][Full Text] [Related]
7. Interactions of derivatives of guanidinophenylglycine and guanidinophenylalanine with trypsin and related enzymes. Tsunematsu H; Makisumi S J Biochem; 1980 Dec; 88(6):1773-83. PubMed ID: 7462203 [TBL] [Abstract][Full Text] [Related]
8. Oxygen and sulfur esters of "inverse substrates": different responses of amidinophenol and amidinothiophenol in the activation of the rate of tryptic hydrolysis of the inverse esters. Tanizawa K; Kanaoka Y J Biochem; 1985 Jan; 97(1):275-80. PubMed ID: 3997793 [TBL] [Abstract][Full Text] [Related]
9. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins. Sekizaki H; Itoh K; Murakami M; Toyota E; Tanizawa K Comp Biochem Physiol B Biochem Mol Biol; 2000 Nov; 127(3):337-46. PubMed ID: 11126764 [TBL] [Abstract][Full Text] [Related]
10. Enantiomeric specificity at the deacylation process of tryptic catalysis. Tanizawa K; Yamada H; Kanaoka Y Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332 [TBL] [Abstract][Full Text] [Related]
11. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates". Fujioka T; Tanizawa K; Kanaoka Y J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and kinetic characterisation of omega-guanidinocarbonic acid ethyl esters as trypsin substrates. Schuster M; Medvedkin VN; Schellenberger V; Mitin YuV ; Jakubke HD Biomed Biochim Acta; 1990; 49(6):519-21. PubMed ID: 2275728 [TBL] [Abstract][Full Text] [Related]
13. A dithioamino acid in kinetic studies on trypsin catalysis. The tryptic S-alkyl cleavage of ethyl 6-ammoniumdithiohexanoate p-toluene sulfonate. Stapf W; Heidberg J; Hartmann H Eur J Biochem; 1974 Feb; 42(1):29-32. PubMed ID: 4830194 [No Abstract] [Full Text] [Related]
14. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes. Nozawa M; Tanizawa K; Kanaoka Y J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567 [TBL] [Abstract][Full Text] [Related]
15. A facile synthesis of p- and m-(amidinomethyl)phenyl esters derived from amino acid and tryptic hydrolysis of these synthetic inverse substrates. Sekizaki H; Itoh K; Shibuya A; Toyota E; Tanizawa K Chem Pharm Bull (Tokyo); 2007 Oct; 55(10):1514-7. PubMed ID: 17917298 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and tryptic hydrolysis of p-guanidinophenyl esters derived from amino acids and peptides. Sekizaki H; Itoh K; Toyota E; Tanizawa K Chem Pharm Bull (Tokyo); 1996 Aug; 44(8):1577-9. PubMed ID: 8795276 [TBL] [Abstract][Full Text] [Related]
17. Protease-catalyzed hydrolysis of substrate mimetics (inverse substrates): A new approach reveals a new mechanism. Thormann M; Thust S; Hofmann HJ; Bordusa F Biochemistry; 1999 May; 38(19):6056-62. PubMed ID: 10320331 [TBL] [Abstract][Full Text] [Related]
18. Kinetics and mechanism of catalysis by proteolytic enzymes. The kinetics of hydrolysis of esters of gamma-guanidino-L-alpha-toluene-p-sulphonamidobutyric acid by bovine trypsin and thrombin. Baird JB; Curragh EF; Elmore DT Biochem J; 1965 Sep; 96(3):733-8. PubMed ID: 5862413 [TBL] [Abstract][Full Text] [Related]
19. Kinetics and mechanism of catalysis by proteolytic enzymes. A comparison of the kinetics of hydrolysis of synthetic substrates by bovine alpha- and beta-trypsin. Roberts DV; Elmore DT Biochem J; 1974 Aug; 141(2):545-54. PubMed ID: 4477005 [TBL] [Abstract][Full Text] [Related]
20. A new beta-naphthylamide substrate of p-guanidino-L-phenylalanine for trypsin and related enzymes. Tsunematsu H; Ando K; Hatanaka Y; Mizusaki K; Isobe R; Makisumi S J Biochem; 1985 Dec; 98(6):1597-602. PubMed ID: 3912388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]