BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7142835)

  • 1. Dynamic stability of steady states and static stabilization in unbranched metabolic pathways.
    Dibrov BF; Zhabotinsky AM; Kholodenko BN
    J Math Biol; 1982; 15(1):51-63. PubMed ID: 7142835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Dynamic stability and parametric stabilization of steady states of unbranched metabolic pathways].
    Dibrov BF; Zhabotinskiĭ AM; Kholodenko BN
    Biofizika; 1981; 26(5):790-5. PubMed ID: 7317462
    [No Abstract]   [Full Text] [Related]  

  • 3. [Degree of stability of metabolic chain with 1 feedback loop].
    Kholodenko BN
    Biofizika; 1987; 32(3):424-8. PubMed ID: 3620520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling of dynamics and control in metabolic networks. IV. Local stability analysis of single biochemical control loops.
    Palsson BO; Lightfoot EN
    J Theor Biol; 1985 Mar; 113(2):261-77. PubMed ID: 3999778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of overall feedback inhibition in unbranched biosynthetic pathways.
    Alves R; Savageau MA
    Biophys J; 2000 Nov; 79(5):2290-304. PubMed ID: 11053109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal design of feedback control by inhibition: dynamic considerations.
    Savageau MA
    J Mol Evol; 1975 Aug; 5(3):199-222. PubMed ID: 1159800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modelling of dynamics and control in metabolic networks. V. Static bifurcations in single biochemical control loops.
    Palsson BO; Lightfoot EN
    J Theor Biol; 1985 Mar; 113(2):279-98. PubMed ID: 3999779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. Unbranched pathways.
    Cascante M; Franco R; Canela EI
    Math Biosci; 1989 Jun; 94(2):271-88. PubMed ID: 2520171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of product inhibition in metabolic pathways: stability and control.
    Sen AK; Schulz AR
    Math Biosci; 1989 Oct; 96(2):255-77. PubMed ID: 2520201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady states and stability in metabolic networks without regulation.
    Ivanov O; van der Schaft A; Weissing FJ
    J Theor Biol; 2016 Jul; 401():78-93. PubMed ID: 26992576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transfer-function representation for regulatory responses of a controlled metabolic pathway.
    Sakamoto N
    Biosystems; 1987; 20(4):317-27. PubMed ID: 3651565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why and when channelling can decrease pool size at constant net flux in a simple dynamic channel.
    Mendes P; Kell DB; Westerhoff HV
    Biochim Biophys Acta; 1996 Mar; 1289(2):175-86. PubMed ID: 8600971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the optimal central carbon metabolic pathways under feedback inhibition using flux balance analysis.
    De RK; Tomar N
    J Bioinform Comput Biol; 2012 Dec; 10(6):1250019. PubMed ID: 22913632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological analysis of metabolic control.
    Sen AK
    Math Biosci; 1990 Dec; 102(2):191-223. PubMed ID: 2134493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of metabolic regulation. A graph-theoretic approach using spanning trees.
    Sen AK
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):253-8. PubMed ID: 2018480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodic metabolic systems: oscillations in multiple-loop negative feedback biochemical control networks.
    Mees AI; Rapp PE
    J Math Biol; 1978 Mar; 5(2):99-114. PubMed ID: 731136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid dynamic/static method for large-scale simulation of metabolism.
    Yugi K; Nakayama Y; Kinoshita A; Tomita M
    Theor Biol Med Model; 2005 Oct; 2():42. PubMed ID: 16202166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instantaneous and steady-state gains in the tubuloglomerular feedback system.
    Layton HE; Pitman EB; Moore LC
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F163-74. PubMed ID: 7840242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical approach to G-protein modulation of cellular responsiveness.
    Nauroschat J; an der Heiden U
    J Math Biol; 1997 May; 35(5):609-27. PubMed ID: 9145955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential activation of metabolic pathways: a dynamic optimization approach.
    Oyarzún DA; Ingalls BP; Middleton RH; Kalamatianos D
    Bull Math Biol; 2009 Nov; 71(8):1851-72. PubMed ID: 19412635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.