These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7142954)

  • 1. A stepwise mechanism for the permeation of phloretin through a lipid bilayer.
    Verkman AS; Solomon AK
    J Gen Physiol; 1982 Oct; 80(4):557-81. PubMed ID: 7142954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes.
    Verkman AS; Solomon AK
    J Gen Physiol; 1980 Jun; 75(6):673-92. PubMed ID: 7391812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The quenching of an intramembrane fluorescent probe. A method to study the binding and permeation of phloretin through bilayers.
    Verkman AS
    Biochim Biophys Acta; 1980 Jul; 599(2):370-9. PubMed ID: 7407100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeation of phloretin across bilayer lipid membranes monitored by dipole potential and microelectrode measurements.
    Pohl P; Rokitskaya TI; Pohl EE; Saparov SM
    Biochim Biophys Acta; 1997 Jan; 1323(2):163-72. PubMed ID: 9042340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles.
    Franklin JC; Cafiso DS
    Biophys J; 1993 Jul; 65(1):289-99. PubMed ID: 8396456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enthalpy-driven apolipoprotein A-I and lipid bilayer interaction indicating protein penetration upon lipid binding.
    Arnulphi C; Jin L; Tricerri MA; Jonas A
    Biochemistry; 2004 Sep; 43(38):12258-64. PubMed ID: 15379564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.
    Tan A; Ziegler A; Steinbauer B; Seelig J
    Biophys J; 2002 Sep; 83(3):1547-56. PubMed ID: 12202379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid subclass specific alterations in the passive ion permeability of membrane bilayers: separation of enthalpic and entropic contributions to transbilayer ion flux.
    Zeng Y; Han X; Gross RW
    Biochemistry; 1998 Feb; 37(8):2346-55. PubMed ID: 9485381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of the calcium antagonist flunarizine to phosphatidylcholine bilayers: charge effects and thermodynamics.
    Thomas PG; Seelig J
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):397-402. PubMed ID: 8484720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide binding to lipid bilayers. Nonclassical hydrophobic effect and membrane-induced pK shifts.
    Beschiaschvili G; Seelig J
    Biochemistry; 1992 Oct; 31(41):10044-53. PubMed ID: 1390763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence.
    Soekarjo M; Eisenhawer M; Kuhn A; Vogel H
    Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-jump studies of merocyanine 540 relaxation kinetics in lipid bilayer membranes.
    Verkman AS; Frosch MP
    Biochemistry; 1985 Dec; 24(25):7117-22. PubMed ID: 4084566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alteration of lipid bilayer dynamics by phloretin and 6-ketocholestanol.
    Przybylo M; Procek J; Hof M; Langner M
    Chem Phys Lipids; 2014 Feb; 178():38-44. PubMed ID: 24316311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the glucose permeation rate across phospholipid bilayers using small unilamellar vesicles. Effect of membrane composition and temperature.
    Bresseleers GJ; Goderis HL; Tobback PP
    Biochim Biophys Acta; 1984 May; 772(3):374-82. PubMed ID: 6722152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes.
    Shah J; Duclos RI; Shipley GG
    Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between phloretin and the red blood cell membrane.
    Jennings ML; Solomon AK
    J Gen Physiol; 1976 Apr; 67(4):381-97. PubMed ID: 5575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.