These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 7146097)
41. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy. Nigg DW; Wemple CA; Risler R; Hartwell JK; Harker YD; Laramore GE Med Phys; 2000 Feb; 27(2):359-67. PubMed ID: 10718140 [TBL] [Abstract][Full Text] [Related]
42. Radiobiological studies with therapeutic neutron beams generated by p+ leads to Be or d+ leads to Be. Hall EJ; Zaider M; Bird R; Astor M; Roberts W Br J Radiol; 1982 Sep; 55(657):640-4. PubMed ID: 6289956 [TBL] [Abstract][Full Text] [Related]
43. A new approach to dose estimation and in-phantom figure of merit measurement in BNCT by using artificial neural networks. Ahangari R; Afarideh H Australas Phys Eng Sci Med; 2011 Dec; 34(4):467-79. PubMed ID: 22042720 [TBL] [Abstract][Full Text] [Related]
44. Neutron collimator optimization for 14.1 MeV DT neutrons using Monte Carlo and Genetic algorithms. Cheng C; Xie Y; Xia X; Gu J; Wang P; Xing L; Wang M; Hei D; Lei H; Wenbao J Appl Radiat Isot; 2023 Aug; 198():110838. PubMed ID: 37182395 [TBL] [Abstract][Full Text] [Related]
45. Microdosimetry of a 42 MeV therapy neutron beam. Kliauga P; Horton J; Stafford P Int J Radiat Oncol Biol Phys; 1989 Mar; 16(3):845-8. PubMed ID: 2493437 [TBL] [Abstract][Full Text] [Related]
46. The effect of bone on dose distributions produced by the Fermi National Laboratory fast-neutron beam. McGinley PH; McLaren JR Radiology; 1979 Oct; 133(1):246-8. PubMed ID: 472305 [TBL] [Abstract][Full Text] [Related]
47. Neutron spectra of 241Am-B, 241Am-Be, 241Am-F, 242Cm-Be, 238Pu-13C and 252Cf isotopic neutron sources. Lorch EA Int J Appl Radiat Isot; 1973 Oct; 24(10):585-91. PubMed ID: 4744412 [No Abstract] [Full Text] [Related]
48. [IV. Studies on cell biological experiments to the relative biological effectiveness (RBE) of fast neutrons in different phantom depths (author's transl)]. Magdon E Arch Geschwulstforsch; 1975; 45(8):746-52. PubMed ID: 1230122 [TBL] [Abstract][Full Text] [Related]
49. Triple chamber technique for thermal neutron dose measurements in fast neutron beams. Schmidt R; Hess A Strahlentherapie; 1982 Oct; 158(10):612-5. PubMed ID: 7179343 [TBL] [Abstract][Full Text] [Related]
50. Spectra and dosimetry related to neutron irradiations of the human body. Ing H; Cross WG Phys Med Biol; 1975 Nov; 20(6):906-17. PubMed ID: 1202508 [TBL] [Abstract][Full Text] [Related]
51. Monte Carlo simulation of fast neutron spectra: mean lineal energy estimation with an effectiveness function and correlation to RBE. Pignol J; Slabbert J; Binns P Int J Radiat Oncol Biol Phys; 2001 Jan; 49(1):251-60. PubMed ID: 11163522 [TBL] [Abstract][Full Text] [Related]
52. Comparison of fast neutron beams for radiotherapy produced by 17.3-MeV deuterons incident on beryllium and deuterium targets. Edwards FM; Fielding HW; Kraushaar JJ; Weaver KA Med Phys; 1974; 1(6):317-22. PubMed ID: 4456191 [No Abstract] [Full Text] [Related]
53. The use of 10B to enhance the tumour dose in fast-neutron therapy. Waterman FM; Kuchnir FT; Skaggs LS; Bewley DK; Page BC; Attix FH Phys Med Biol; 1978 Jul; 23(4):592-602. PubMed ID: 100793 [TBL] [Abstract][Full Text] [Related]
54. Measurement of photon dose fraction in a neutron radiotherapy beam. Weaver K; Bichsel H; Eenmaa J; Wootton P Med Phys; 1977; 4(5):376-86. PubMed ID: 409918 [TBL] [Abstract][Full Text] [Related]
55. Dosimetric investigations in the dose buildup using bolus techniques for fast neutron therapy. Hess A; Schmidt R; Thom M Med Phys; 1991; 18(4):829-31. PubMed ID: 1921892 [TBL] [Abstract][Full Text] [Related]
56. Scattered radiation from a neutron collimator. Attix FH; August LS; Shapiro P Med Phys; 1977; 4(2):118-22. PubMed ID: 850508 [TBL] [Abstract][Full Text] [Related]
57. Phosphorus activation neutron dosimetry and its application to an 18-MV radiotherapy accelerator. Bading JR; Zeitz L; Laughlin JS Med Phys; 1982; 9(6):835-43. PubMed ID: 6819434 [TBL] [Abstract][Full Text] [Related]
58. Fast neutron therapy beam produced by 26 MeV protons on beryllium. Goodhead DT; Berry RJ; Bance DA; Gray P Phys Med Biol; 1978 Jan; 23(1):144-8. PubMed ID: 416445 [No Abstract] [Full Text] [Related]
59. A comparison for use in radiotherapy of neutron beams generated with 16 and 42 MeV deuterons on beryllium. Bewley DK; Cullen B; Field SB; Hornsey S; Page BC; Berry RJ Br J Radiol; 1976 Apr; 49(580):360-6. PubMed ID: 938853 [TBL] [Abstract][Full Text] [Related]
60. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors. Rasouli FS; Masoudi SF Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]