These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 7146910)
1. Transient Raman study of hemoglobin: structural dependence of the iron-histidine linkage. Friedman JM; Rousseau DL; Ondrias MR; Stepnoski RA Science; 1982 Dec; 218(4578):1244-6. PubMed ID: 7146910 [TBL] [Abstract][Full Text] [Related]
2. The iron-proximal histidine linkage and protein control of oxygen binding in hemoglobin. A transient Raman study. Friedman JM; Scott TW; Stepnoski RA; Ikeda-Saito M; Yonetani T J Biol Chem; 1983 Sep; 258(17):10564-72. PubMed ID: 6885793 [TBL] [Abstract][Full Text] [Related]
3. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode. Gilch H; Schweitzer-Stenner R; Dreybrodt W Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641 [TBL] [Abstract][Full Text] [Related]
4. Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species. Franzen S; Bohn B; Poyart C; Martin JL Biochemistry; 1995 Jan; 34(4):1224-37. PubMed ID: 7827072 [TBL] [Abstract][Full Text] [Related]
5. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants. Peterson ES; Friedman JM; Chien EY; Sligar SG Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545 [TBL] [Abstract][Full Text] [Related]
7. Resonance Raman spectra of photodissociated carbonmonoxy hemoglobin and deoxy hemoglobin at 10 K. Ondrias MR; Rousseau DL; Simon SR J Biol Chem; 1983 May; 258(9):5638-42. PubMed ID: 6853537 [TBL] [Abstract][Full Text] [Related]
8. A photolysis-triggered heme ligand switch in H93G myoglobin. Franzen S; Bailey J; Dyer RB; Woodruff WH; Hu RB; Thomas MR; Boxer SG Biochemistry; 2001 May; 40(17):5299-305. PubMed ID: 11318654 [TBL] [Abstract][Full Text] [Related]
9. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A. Peterson ES; Friedman JM Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755 [TBL] [Abstract][Full Text] [Related]
10. Structure, dynamics, and reactivity in hemoglobin. Friedman JM Science; 1985 Jun; 228(4705):1273-80. PubMed ID: 4001941 [TBL] [Abstract][Full Text] [Related]
11. Ligation and quaternary structure induced changes in the heme pocket of hemoglobin: a transient resonance Raman study. Friedman JM; Stepnoski RA; Stavola M; Ondrias MR; Cone RL Biochemistry; 1982 Apr; 21(9):2022-8. PubMed ID: 7093226 [TBL] [Abstract][Full Text] [Related]
12. Absence of ligand binding-induced tertiary changes in the multimeric earthworm Lumbricus terrestris hemoglobin. A resonance Raman study. Vidugiris GJ; Harrington JP; Friedman JM; Hirsch RE J Biol Chem; 1993 Dec; 268(35):26190-2. PubMed ID: 8253738 [TBL] [Abstract][Full Text] [Related]
13. Absence of cooperative energy at the heme in liganded hemoglobins. Rousseau DL; Tan SL; Ondrias MR; Ogawa S; Noble RW Biochemistry; 1984 Jun; 23(13):2857-65. PubMed ID: 6466621 [TBL] [Abstract][Full Text] [Related]
14. The structural bases for the unique ligand binding properties of Glycera dibranchiata hemoglobins. A resonance Raman study. Carson SD; Constantinidis I; Mintorovitch J; Satterlee JD; Ondrias MR J Biol Chem; 1986 Feb; 261(5):2246-55. PubMed ID: 3944134 [TBL] [Abstract][Full Text] [Related]
15. Picosecond time-resolved resonance Raman studies of hemoglobin: implications for reactivity. Findsen EW; Friedman JM; Ondrias MR; Simon SR Science; 1985 Aug; 229(4714):661-5. PubMed ID: 4023704 [TBL] [Abstract][Full Text] [Related]
16. Intersubunit communication via changes in hemoglobin quaternary structures revealed by time-resolved resonance Raman spectroscopy: direct observation of the Perutz mechanism. Yamada K; Ishikawa H; Mizuno M; Shibayama N; Mizutani Y J Phys Chem B; 2013 Oct; 117(41):12461-8. PubMed ID: 24067234 [TBL] [Abstract][Full Text] [Related]
17. Tertiary dynamics of human adult hemoglobin fixed in R and T quaternary structures. Chang S; Mizuno M; Ishikawa H; Mizutani Y Phys Chem Chem Phys; 2018 Jan; 20(5):3363-3372. PubMed ID: 29260810 [TBL] [Abstract][Full Text] [Related]
18. Quaternary-transformation-induced changes at the heme in deoxyhemoglobins. Ondrias MR; Rousseau DL; Shelnutt JA; Simon SR Biochemistry; 1982 Jul; 21(14):3428-37. PubMed ID: 6288075 [TBL] [Abstract][Full Text] [Related]
19. Structural and dynamic properties of the homodimeric hemoglobin from Scapharca inaequivalvis Thr-72-->Ile mutant: molecular dynamics simulation, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy studies. Falconi M; Desideri A; Cupane A; Leone M; Ciccotti G; Peterson ES; Friedman JM; Gambacurta A; Ascoli F Biophys J; 1998 Nov; 75(5):2489-503. PubMed ID: 9788944 [TBL] [Abstract][Full Text] [Related]