These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7146949)

  • 1. Role of the myosin light chains in the regulation of contractile activity.
    Kendrick-Jones J; Jakes R; Tooth P; Craig R; Scholey J
    Soc Gen Physiol Ser; 1982; 37():255-72. PubMed ID: 7146949
    [No Abstract]   [Full Text] [Related]  

  • 2. Calcium ions modulate regulation of smooth muscle contraction mediated by phosphorylation of myosin regulatory light chains.
    Avrova SV; Borovikov YS; Efimova NN; Horiuchi KY; Chacko S
    Biochemistry (Mosc); 1999 Mar; 64(3):335-7. PubMed ID: 10205303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of myosin light chain phosphorylation in the regulation of contractile activity.
    Kendrick-Jones J; Smith RC; Craig R; Cande WZ; Tooth PJ; Scholey JM
    Biochem Soc Trans; 1983 Apr; 11 Pt 2():154. PubMed ID: 6135632
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparative aspects of the regulation of contraction in vertebrate muscle.
    Perry SV; Cole HA; Grand RJ; Levine BA
    Soc Gen Physiol Ser; 1982; 37():243-54. PubMed ID: 6216599
    [No Abstract]   [Full Text] [Related]  

  • 5. Calcium-activated tension: the role of myosin light chain phosphorylation.
    Kerrick WG; Hoar PE; Cassidy PS
    Fed Proc; 1980 Apr; 39(5):1558-63. PubMed ID: 7364052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of myosin light chains in regulating actin-myosin interaction.
    Scholey JM; Taylor KA; Kendrick-Jones J
    Biochimie; 1981 Apr; 63(4):255-71. PubMed ID: 7013829
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of molluscan myosin by light chains.
    Szent-Györgyi AG
    Acta Biochim Biophys Hung; 1987; 22(4):377-89. PubMed ID: 3132000
    [No Abstract]   [Full Text] [Related]  

  • 8. [Regulatory chains of skeletal muscle myosin].
    Stepkowski D; Kakol I
    Postepy Biochem; 1983; 29(3-4):355-75. PubMed ID: 6237319
    [No Abstract]   [Full Text] [Related]  

  • 9. [Correlation between Ca2+-dependent movement of crosslinks in myosin filaments and Ca2+-sensitive actin-activated ATPase of skeletal muscle myosin].
    Podlubnaia ZA; Malyshev SL; Lukoianova NA; Vishnevskaia ZI; Udal'tspv SM; Stepkovskiĭ D; Konkol' I
    Biofizika; 1996; 41(1):58-63. PubMed ID: 8714459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle myosin light chains are essential for physiological speeds of shortening.
    Lowey S; Waller GS; Trybus KM
    Nature; 1993 Sep; 365(6445):454-6. PubMed ID: 8413589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role of myosin light chains in regulation of myocardial contraction].
    Moczarska A
    Postepy Biochem; 1999; 45(3):185-92. PubMed ID: 10761194
    [No Abstract]   [Full Text] [Related]  

  • 12. Evaluation of the symmetric model for myosin-linked regulation: effect of site-directed mutations in the regulatory light chain on scallop myosin.
    Colegrave M; Patel H; Offer G; Chantler PD
    Biochem J; 2003 Aug; 374(Pt 1):89-96. PubMed ID: 12765546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of smooth muscle myosin and myosin light chains.
    Mrwa U; Hartshorne DJ
    Fed Proc; 1980 Apr; 39(5):1564-8. PubMed ID: 7364053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinine inhibits vascular contraction independent of effects on calcium or myosin phosphorylation.
    Adegunloye B; Lamarre E; Moreland RS
    J Pharmacol Exp Ther; 2003 Jan; 304(1):294-300. PubMed ID: 12490604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of regulation of Ca(2+)-sensitivity in smooth muscle contraction].
    Zhu WZ; Han QD
    Sheng Li Ke Xue Jin Zhan; 1997 Jul; 28(3):243-5. PubMed ID: 11038734
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural transitions in myosin and the origin of contractile force in muscle.
    Harrington WF; Ueno H
    Biopolymers; 1987; 26 Suppl():S81-98. PubMed ID: 3580502
    [No Abstract]   [Full Text] [Related]  

  • 17. Significance of the N-terminal fragment of myosin regulatory light chain for myosin-actin interaction.
    Stepkowski D; Szczesna D; Babiychuk EB; Borovikov YS; Kakol I
    Biochem Mol Biol Int; 1995 Mar; 35(3):677-84. PubMed ID: 7773203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of phosphorylating myosin light chains and ionic strength on actin-myosin interaction in a relaxed skeletal muscle fiber].
    Efimov NN; Borovikov IuS
    Biokhimiia; 1995 Nov; 60(11):1799-802. PubMed ID: 8590753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phorbol ester-induced potentiation of myogenic tone is not associated with increases in Ca2+ influx, myoplasmic free Ca2+ concentration, or 20-kDa myosin light chain phosphorylation.
    Laporte R; Haeberle JR; Laher I
    J Mol Cell Cardiol; 1994 Mar; 26(3):297-302. PubMed ID: 8028013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the motor and enzymatic properties of smooth muscle long S1 and short HMM: role of the two-headed structure on the activity and regulation of the myosin motor.
    Sata M; Matsuura M; Ikebe M
    Biochemistry; 1996 Aug; 35(34):11113-8. PubMed ID: 8780515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.