These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7147468)

  • 21. Calibration of hydrophones based on reciprocity and time delay spectrometry.
    Ludwig G; Brendel K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):168-74. PubMed ID: 18290143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A pvdf membrane hydrophone for operation in the range 0.5 Mhz to 15 Mhz.
    Shotton KC; Bacon DR; Quilliam RM
    Ultrasonics; 1980 May; 18(3):123-6. PubMed ID: 7376282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields.
    Parsons JE; Cain CA; Fowlkes JB
    J Acoust Soc Am; 2006 Mar; 119(3):1432-40. PubMed ID: 16583887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A discussion of procedures for ultrasonic intensity and power calculations from miniature hydrophone measurements.
    Harris GR
    Ultrasound Med Biol; 1985; 11(6):803-17. PubMed ID: 3913079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes.
    Selfridge A; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1372-6. PubMed ID: 18238683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 100 MHz bandwidth planar laser-generated ultrasound source for hydrophone calibration.
    Rajagopal S; Cox BT
    Ultrasonics; 2020 Dec; 108():106218. PubMed ID: 32721650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrophone spatial averaging corrections from 1 to 40 MHz.
    Radulescu EG; Lewin PA; Goldstein A; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1575-80. PubMed ID: 11800120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermoacoustic sensor for ultrasound power measurements and ultrasonic equipment calibration.
    Fay B; Rinker M; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):367-73. PubMed ID: 8085293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz.
    Wilkens V; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1784-91. PubMed ID: 17941384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear propagation model for ultrasound hydrophones calibration in the frequency range up to 100 MHz.
    Radulescu EG; Wójcik J; Lewin PA; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):239-45. PubMed ID: 12782254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of two methods for phase response calibration of hydrophones in the frequency range 10-400 kHz.
    Hayman G; Wang Y; Robinson S
    J Acoust Soc Am; 2013 Feb; 133(2):750-9. PubMed ID: 23363094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary calibration of ultrasonic hydrophone using optical interferometry.
    Bacon DR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):152-61. PubMed ID: 18290141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multiple-frequency hydrophone calibration technique.
    Smith RA; Bacon DR
    J Acoust Soc Am; 1990 May; 87(5):2231-43. PubMed ID: 2189922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extending the frequency range of the National Physical Laboratory primary standard laser interferometer for hydrophone calibrations to 80 MHz.
    Esward TJ; Robinson SP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):737-44. PubMed ID: 18238474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of ultrasonic transducers using a fiberoptic sensor.
    Wu YQ; Shankar PM; Lewin PA
    Ultrasound Med Biol; 1994; 20(7):645-53. PubMed ID: 7810025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields.
    Martin E; Treeby B
    J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calibration of the 1-MHz Sonitron ultrasound system.
    Kopechek JA; Kim H; McPherson DD; Holland CK
    Ultrasound Med Biol; 2010 Oct; 36(10):1762-6. PubMed ID: 20800963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Practicalities of Obtaining and Using Hydrophone Calibration Data to Derive Pressure Waveforms.
    Hurrell AM; Rajagopal S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):126-140. PubMed ID: 27479961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.