These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7148264)

  • 1. Investigations on the control of ion transport in human erythrocytes. I. Passive 86Rb efflux and possibilities of its influence.
    Bernhardt I; Borning M; Glaser R
    Acta Biol Med Ger; 1982; 41(6):531-9. PubMed ID: 7148264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the control of ion transport in human erythrocytes. II. Influence of transmembrane potential, exterior surface potential and intracellular pH on the 22Na efflux.
    Bernhardt I; Glaser R
    Acta Biol Med Ger; 1982; 41(6):541-7. PubMed ID: 7148265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species-dependent differences in the effect of ionic strength on potassium transport of erythrocytes: the role of lipid composition.
    Bernhardt I; Seidler G; Ihrig I; Erdmann A
    Gen Physiol Biophys; 1992 Jun; 11(3):287-99. PubMed ID: 1330813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-dependent differences in the influence of ionic strength on potassium transport of erythrocytes. The role of membrane fluidity and Ca2+.
    Erdmann A; Bernhardt I; Herrmann A; Glaser R
    Gen Physiol Biophys; 1990 Dec; 9(6):577-88. PubMed ID: 1964138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors involved in the increase of K+ efflux of erythrocytes in low chloride media.
    Bernhardt I; Erdmann A; Vogel R; Glaser R
    Biomed Biochim Acta; 1987; 46(2-3):S36-40. PubMed ID: 3593314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 22Na and 86Rb effluxes from bull spermatozoa.
    Petzoldt R; Steffens T; Bernhardt I
    Biomed Biochim Acta; 1986; 45(6):755-60. PubMed ID: 3753479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of surface charge and transmembrane potential on rubidium-86 efflux of human red blood cells.
    Bernhardt I; Donath E; Glaser R
    J Membr Biol; 1984; 78(3):249-55. PubMed ID: 6726792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of anion exchange and thiol groups in the regulation of potassium efflux by lead in human erythrocytes.
    Lal B; Goldstein G; Bressler JP
    J Cell Physiol; 1996 May; 167(2):222-8. PubMed ID: 8613462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The effect of hematocrit value and factors altering the surface charge on the 22Na and 86Rb efflux of human erythrocytes].
    Kunter U; Glaser R
    Acta Biol Med Ger; 1977; 36(5-6):925-30. PubMed ID: 602596
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of charged amphiphiles in depolarising solutions on potassium efflux and the osmotic fragility of human erythrocytes.
    Wróbel A
    Bioelectrochemistry; 2008 Aug; 73(2):117-22. PubMed ID: 18486568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fluoride and vanadate on K+ transport across the erythrocyte membrane of Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    Membr Cell Biol; 2000; 13(4):527-36. PubMed ID: 10926370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel assay of cell rubidium uptake using graphite furnace atomic absorption: application to rats on a magnesium-deficient diet.
    Zhen Y; Franz KB; Graves SW
    J Nutr Biochem; 2005 May; 16(5):291-6. PubMed ID: 15866229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of a ouabain-sensitive Rb+ uptake in human erthrocytes with an external electric field.
    Serpersu EH; Tsong TY
    J Membr Biol; 1983; 74(3):191-201. PubMed ID: 6887232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of muscarinic cholinergic receptors on human SH-SY5Y neuroblastoma cells enhances both the influx and efflux of K+ under conditions of hypo-osmolarity.
    Foster DJ; Heacock AM; Keep RF; Fisher SK
    J Pharmacol Exp Ther; 2008 May; 325(2):457-65. PubMed ID: 18281593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Influence of various parameters on the uptake of 86 Rb by normal human erythrocytes].
    Plagne R; Bidet JM; Chollet Ph; bard JJ; Sauvezie B
    C R Seances Soc Biol Fil; 1974; 168(2-3):289-94. PubMed ID: 4282288
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of high external concentrations of K+ on 86Rb+ efflux in human platelets: evidence for Na+/K+/2Cl- co-transport.
    de Silva HA; Carver JG; Aronson JK
    Clin Sci (Lond); 1996 Dec; 91(6):725-31. PubMed ID: 8976808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rubidium transport in X-irradiated human erythrocytes.
    Haskovec C; Kinkor M; Sigler K
    Int J Radiat Biol Relat Stud Phys Chem Med; 1985 Nov; 48(5):773-83. PubMed ID: 3932245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Transport of ions into human erythrocytes in various forms of hemolytic anemia: a correlation analysis].
    Orlov SN; Pokudin NI; El'-Rabi LS; Brusovanik VI; Kubatiev AA
    Biokhimiia; 1993 Jun; 58(6):866-73. PubMed ID: 8364110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of external surface potential and transmembrane potential on the passive transbilayer movement of phospholipids in the red blood cell membrane.
    Jänchen G; Libera J; Pomorski T; Müller P; Herrmann A; Bernhardt I
    Gen Physiol Biophys; 1996 Oct; 15(5):415-20. PubMed ID: 9228522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for tryptophan residues in the cation transport path of the Na(+),K(+)-ATPase.
    Yudowski GA; Bar Shimon M; Tal DM; González-Lebrero RM; Rossi RC; Garrahan PJ; Beaugé LA; Karlish SJ
    Biochemistry; 2003 Sep; 42(34):10212-22. PubMed ID: 12939149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.