BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 7148265)

  • 1. Investigations on the control of ion transport in human erythrocytes. II. Influence of transmembrane potential, exterior surface potential and intracellular pH on the 22Na efflux.
    Bernhardt I; Glaser R
    Acta Biol Med Ger; 1982; 41(6):541-7. PubMed ID: 7148265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the control of ion transport in human erythrocytes. I. Passive 86Rb efflux and possibilities of its influence.
    Bernhardt I; Borning M; Glaser R
    Acta Biol Med Ger; 1982; 41(6):531-9. PubMed ID: 7148264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors involved in the increase of K+ efflux of erythrocytes in low chloride media.
    Bernhardt I; Erdmann A; Vogel R; Glaser R
    Biomed Biochim Acta; 1987; 46(2-3):S36-40. PubMed ID: 3593314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-dependent differences in the influence of ionic strength on potassium transport of erythrocytes. The role of membrane fluidity and Ca2+.
    Erdmann A; Bernhardt I; Herrmann A; Glaser R
    Gen Physiol Biophys; 1990 Dec; 9(6):577-88. PubMed ID: 1964138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How extracellular potassium affects intracellular sodium pool in human erythrocytes.
    Parui R; Gambhir KK; Mehrotra PP; Curry CL
    Biochem Int; 1992 Sep; 27(6):1093-100. PubMed ID: 1332719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of artificial aggregation of washed human erythrocytes caused by decreased pH and reduced ionic strength.
    Lerche D; Glaser R
    Acta Biol Med Ger; 1980; 39(8-9):973-8. PubMed ID: 7282229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cell membrane transport of magnesium].
    Konishi M
    Clin Calcium; 2005 Feb; 15(2):233-8. PubMed ID: 15692162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species-dependent differences in the effect of ionic strength on potassium transport of erythrocytes: the role of lipid composition.
    Bernhardt I; Seidler G; Ihrig I; Erdmann A
    Gen Physiol Biophys; 1992 Jun; 11(3):287-99. PubMed ID: 1330813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocyte sodium transport in acute hypophosphatemia in man.
    Borghi L; Canali M; Sani E; Curti A; Montanari A; Novarini A; Borghetti A
    Miner Electrolyte Metab; 1984; 10(1):26-30. PubMed ID: 6330513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH regulation in horizontal cells of the skate retina.
    Haugh-Scheidt L; Ripps H
    Exp Eye Res; 1998 Apr; 66(4):449-63. PubMed ID: 9593638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Sherstobitov AO
    Gen Physiol Biophys; 1996 Apr; 15(2):129-43. PubMed ID: 8899417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells.
    Park KS; Jo I; Pak K; Bae SW; Rhim H; Suh SH; Park J; Zhu H; So I; Kim KW
    Pflugers Arch; 2002 Jan; 443(3):344-52. PubMed ID: 11810202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between Na+ and H+ ions on Na-H exchange in sheep cardiac Purkinje fibers.
    Wu ML; Vaughan-Jones RD
    J Mol Cell Cardiol; 1997 Apr; 29(4):1131-40. PubMed ID: 9160865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of low ionic strength media on passive human red cell monovalent cation transport.
    Bernhardt I; Hall AC; Ellory JC
    J Physiol; 1991 Mar; 434():489-506. PubMed ID: 2023127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
    Gusev GP; Agalakova NI; Ivanova TI
    Gen Physiol Biophys; 2008 Dec; 27(4):284-90. PubMed ID: 19202202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of charged amphiphiles in depolarising solutions on potassium efflux and the osmotic fragility of human erythrocytes.
    Wróbel A
    Bioelectrochemistry; 2008 Aug; 73(2):117-22. PubMed ID: 18486568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The role of carriers of intracellular fixed charges in the regulation of the resting potential of cells with ion pumps].
    Glaser R
    Acta Biol Med Ger; 1976; 35(6):715-21. PubMed ID: 983619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.
    Gusev GP; Ivanova TI
    Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential influence of extracellular and intracellular pH on K+ accumulation in ischaemic mammalian cardiac tissue.
    Vanheel B; Van de Voorde J
    J Mol Cell Cardiol; 1995 Jul; 27(7):1443-55. PubMed ID: 7473789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.