BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7149242)

  • 1. A separation chamber to sort cells and cell organelles by weak physical forces. III. Preparative electrophoresis of cells in stationary density gradients at low electric field strength.
    Tulp A; Timmerman A; Barnhoorn MG
    Anal Biochem; 1982 Aug; 124(2):432-9. PubMed ID: 7149242
    [No Abstract]   [Full Text] [Related]  

  • 2. One-step separation of endocytic organelles, Golgi/trans-Golgi network and plasma membrane by density gradient electrophoresis.
    Lindner R
    Electrophoresis; 2001 Feb; 22(3):386-93. PubMed ID: 11258743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation and isolation of single cells and nuclei.
    Tan SJ; Li Q; Lim CT
    Methods Cell Biol; 2010; 98():79-96. PubMed ID: 20816231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A separation chamber to sort cells, nuclei, and chromosomes at moderate g forces. II. Studies on velocity sedimentation and equilibrium density centrifugation of mammalian cells.
    Tulp A; Kooi MW; Kipp JB; Barnhoorn MG; Polak F
    Anal Biochem; 1981 Nov; 117(2):354-65. PubMed ID: 7325371
    [No Abstract]   [Full Text] [Related]  

  • 5. Cell separation by dielectrophoretic field-flow-fractionation.
    Wang XB; Yang J; Huang Y; Vykoukal J; Becker FF; Gascoyne PR
    Anal Chem; 2000 Feb; 72(4):832-9. PubMed ID: 10701270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of cells and cell organelles by partition in aqueous polymer two-phase systems.
    Albertsson PA
    Methods Enzymol; 1989; 171():532-49. PubMed ID: 2480505
    [No Abstract]   [Full Text] [Related]  

  • 7. A new design for efficient dielectrophoretic separation of cells in a microdevice.
    Jubery TZ; Dutta P
    Electrophoresis; 2013 Mar; 34(5):643-50. PubMed ID: 23255020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of an improved density gradient electrophoresis apparatus to the separation of proteins, cells and subcellular organelles.
    Tulp A; Verwoerd D; Pieters J
    Electrophoresis; 1993 Dec; 14(12):1295-301. PubMed ID: 8137792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From micro to macro: conversion of capillary electrophoretic separations of biomolecules and bioparticles to preparative free-flow electrophoresis scale.
    Kasicka V
    Electrophoresis; 2009 Jun; 30 Suppl 1():S40-52. PubMed ID: 19517515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity sedimentation of cells.
    Pretlow TG; Pretlow TP
    Nature; 1988 May; 333(6168):97. PubMed ID: 3362215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially selecting a single cell for lysis using light-induced electric fields.
    Witte C; Kremer C; Chanasakulniyom M; Reboud J; Wilson R; Cooper JM; Neale SL
    Small; 2014 Aug; 10(15):3026-31. PubMed ID: 24719234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic device for separating erythrocytes polluted by lead (II) from a continuous bloodstream flow.
    Wang MW
    Electrophoresis; 2012 Mar; 33(5):780-7. PubMed ID: 22522535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies.
    Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P
    Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of cells and cell organelles by weak physical forces IV. Applications.
    Tulp A; Aten JA; Barnhoorn MG; van Beek WP; Collard JG; Lutter R; Westra JG
    Prog Clin Biol Res; 1982; 102 pt A():105-14. PubMed ID: 7167432
    [No Abstract]   [Full Text] [Related]  

  • 15. Preparative free-flow electrophoresis, a versatile technology complementing gradient centrifugation in the isolation of highly purified cell organelles.
    Islinger M; Wildgruber R; Völkl A
    Electrophoresis; 2018 Sep; 39(18):2288-2299. PubMed ID: 29761848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density gradient electrophoresis of mammalian cells.
    Tulp A
    Methods Biochem Anal; 1984; 30():141-98. PubMed ID: 6377011
    [No Abstract]   [Full Text] [Related]  

  • 17. Microfluidic chemical cytometry based on modulation of local field strength.
    Wang HY; Lu C
    Chem Commun (Camb); 2006 Sep; (33):3528-30. PubMed ID: 16921434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous flow electrophoresis applied to the separation of cells, membranes and membrane functional domains.
    Crawford N
    Prog Clin Biol Res; 1988; 270():51-67. PubMed ID: 3045835
    [No Abstract]   [Full Text] [Related]  

  • 19. Preparative continuous separation of biological particles by means of free-flow magnetophoresis in a free-flow electrophoresis chamber.
    Hartig R; Hausmann M; Schmitt J; Herrmann DB; Riedmiller M; Cremer C
    Electrophoresis; 1992; 13(9-10):674-6. PubMed ID: 1459090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.