These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7149726)

  • 1. Protein phosphorylation and excitation energy distribution in normal intermittent-light-grown, and a chlorophyll b-less mutant of barley.
    Haworth P; Kyle DJ; Arntzen CJ
    Arch Biochem Biophys; 1982 Oct; 218(1):199-206. PubMed ID: 7149726
    [No Abstract]   [Full Text] [Related]  

  • 2. Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b.
    Thornber JP; Highkin HR
    Eur J Biochem; 1974 Jan; 41(1):109-16. PubMed ID: 4816449
    [No Abstract]   [Full Text] [Related]  

  • 3. Amino acid sequence of the 9-kDa iron-sulfur protein of photosystem I in barley.
    Scheller HV; Svendsen I; Møller BL
    Carlsberg Res Commun; 1989; 54(1):11-5. PubMed ID: 2665764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of light on the biosynthesis of leaf-specific thionins in barley, Hordeum vulgare.
    Reimann-Philipp U; Behnke S; Batschauer A; Schäfer E; Apel K
    Eur J Biochem; 1989 Jun; 182(2):283-9. PubMed ID: 2737201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast biogenesis 87: Evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a.
    Kolossov VL; Kopetz KJ; Rebeiz CA
    Photochem Photobiol; 2003 Aug; 78(2):184-96. PubMed ID: 12945588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of light on dark carboxylation reactions in etiolated barley leaves.
    HALL DO; HUFFAKER RC; SHANNON LM; WALLACE A
    Biochim Biophys Acta; 1959 Oct; 35():540-2. PubMed ID: 14399022
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of varying nitrogen supply on the protein composition of a high lysine mutant of barley.
    Rhodes AP; Jenkins G
    J Sci Food Agric; 1975 May; 26(5):705-9. PubMed ID: 1160360
    [No Abstract]   [Full Text] [Related]  

  • 8. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a dithiol-dependent peptide-transport protein in the scutellum of germinating barley.
    Walker-Smith DJ; Payne JW
    Biochem Soc Trans; 1983 Dec; 11(6):800-3. PubMed ID: 6667778
    [No Abstract]   [Full Text] [Related]  

  • 10. Picosecond time-resolved fluorescence study of chlorophyll organisation and excitation energy distribution in chloroplasts from wild-type barley and a mutant lacking chlorophyll b.
    Searle GF; Tredwell CJ; Barber J; Porter G
    Biochim Biophys Acta; 1979 Mar; 545(3):496-507. PubMed ID: 427141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Nucleotide sequence of the barley chloroplast DNA psbA gene coding for a herbicide-binding protein].
    Efimov VA; Andreeva AV; Dmitrakova EV; Pashkova IN; Reverdatno SV
    Bioorg Khim; 1988 Aug; 14(8):1117-21. PubMed ID: 3064751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreduction of protochlorophyllide and its relationship to delta-aminolaevulinic acid synthesis in the leaves of dark-grown barley (Hordeum vulgare) seedlings.
    Stobart AK; Ameen-Bukhari I
    Biochem J; 1986 Jun; 236(3):741-8. PubMed ID: 3790090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation of membrane structural changes to energy spillover in oat and spinach chloroplasts: use of fluorescence probes and light scattering.
    Vandermeulen DL; Govindjee
    Biochim Biophys Acta; 1974 Oct; 368(1):61-70. PubMed ID: 4424695
    [No Abstract]   [Full Text] [Related]  

  • 14. Chlorophyll-protein complexes of barley photosystem I.
    Bassi R; Simpson D
    Eur J Biochem; 1987 Mar; 163(2):221-30. PubMed ID: 3545828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cations upon chloroplast membrane subunit. Interactions and excitation energy distribution.
    Arntzen CJ; Ditto CL
    Biochim Biophys Acta; 1976 Nov; 449(2):259-74. PubMed ID: 990294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endonucleases for UV-irradiated and depurinated DNA in barley chloroplasts.
    Velemínský J; Svachulová J; Satava J
    Nucleic Acids Res; 1980 Mar; 8(6):1373-81. PubMed ID: 6253934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe deficiency induces phosphorylation and translocation of Lhcb1 in barley thylakoid membranes.
    Saito A; Shimizu M; Nakamura H; Maeno S; Katase R; Miwa E; Higuchi K; Sonoike K
    FEBS Lett; 2014 Jun; 588(12):2042-8. PubMed ID: 24815689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The light-harvesting chlorpohyll-protein complex of photosystem II. Its location in the photosynthetic membrane.
    Miller KR; Miller GJ; McIntyre KR
    J Cell Biol; 1976 Nov; 71(2):624-38. PubMed ID: 993264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADP-Dependent phosphorylation regulates association of a DNA-binding complex with the barley chloroplast psbD blue-light-responsive promoter.
    Kim M; Christopher DA; Mullet JE
    Plant Physiol; 1999 Feb; 119(2):663-70. PubMed ID: 9952463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of the photosynthetic apparatus of the chlorina-f2 mutant of barley using chlorophyll fluorescence decay kinetics.
    Karukstis KK; Sauer K
    Biochim Biophys Acta; 1984 Jul; 766(1):148-55. PubMed ID: 6743648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.