These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7150253)

  • 1. Ethylene production from alpha-oxo-gamma-methylthiobutyric acid is a sensitive measure of ligninolytic activity by Phanerochaete chrysosporium.
    Kelley RL; Reddy CA
    Biochem J; 1982 Aug; 206(2):423-5. PubMed ID: 7150253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium.
    Forney LJ; Reddy CA; Tien M; Aust SD
    J Biol Chem; 1982 Oct; 257(19):11455-62. PubMed ID: 6288685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium.
    Glenn JK; Morgan MA; Mayfield MB; Kuwahara M; Gold MH
    Biochem Biophys Res Commun; 1983 Aug; 114(3):1077-83. PubMed ID: 6615503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection and characterization of mutants of Phanerochaete chrysosporium exhibiting ligninolytic activity under nutrient-rich conditions.
    Tien M; Myer SB
    Appl Environ Microbiol; 1990 Aug; 56(8):2540-4. PubMed ID: 2403260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation.
    Keyser P; Kirk TK; Zeikus JG
    J Bacteriol; 1978 Sep; 135(3):790-7. PubMed ID: 690075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium.
    Hammel KE; Gai WZ; Green B; Moen MA
    Appl Environ Microbiol; 1992 Jun; 58(6):1832-8. PubMed ID: 1622259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine.
    Mansouri S; Bunch AW
    J Gen Microbiol; 1989 Nov; 135(11):2819-27. PubMed ID: 2559143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of hydroxyl radical and its involvement in lignin degradation by Phanerochaete chrysosporium.
    Kutsuki H; Gold MH
    Biochem Biophys Res Commun; 1982 Nov; 109(2):320-7. PubMed ID: 6295392
    [No Abstract]   [Full Text] [Related]  

  • 9. Exocellular and intracellular beta-glucosidase produced in ligninolytic culture of Phanerochaete chrysosporium.
    Jafelice LR; Wiseman A; Goldfarb P
    Biochem Soc Trans; 1990 Aug; 18(4):644-5. PubMed ID: 2125946
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for the involvement of activated oxygen in fungal degradation of lignocellulose.
    Bes B; Ranjeva R; Boudet AM
    Biochimie; 1983; 65(4-5):283-9. PubMed ID: 6409163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.
    Shary S; Kapich AN; Panisko EA; Magnuson JK; Cullen D; Hammel KE
    Appl Environ Microbiol; 2008 Dec; 74(23):7252-7. PubMed ID: 18849459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phanerochaete chrysosporium Multienzyme Catabolic System for in Vivo Modification of Synthetic Lignin to Succinic Acid.
    Hong CY; Ryu SH; Jeong H; Lee SS; Kim M; Choi IG
    ACS Chem Biol; 2017 Jul; 12(7):1749-1759. PubMed ID: 28463479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation.
    Zhao M; Zhang C; Zeng G; Huang D; Xu P; Cheng M
    Chemosphere; 2015 Nov; 138():560-7. PubMed ID: 26210020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Only C-2 specific glucose oxidase activity is expressed in ligninolytic cultures of the white rot fungus Phanerochaete chrysosporium.
    Volc J; Kubátová E; Daniel G; Prikrylová V
    Arch Microbiol; 1996 Jun; 165(6):421-4. PubMed ID: 8661938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene formation by cell-free extracts of Escherichia coli.
    Ince JE; Knowles CJ
    Arch Microbiol; 1986 Nov; 146(2):151-8. PubMed ID: 3541827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus.
    Bajwa PK; Arora DS
    Can J Microbiol; 2009 Dec; 55(12):1397-402. PubMed ID: 20029532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of ethylene-forming system in rat liver extract.
    Fu PC; Zic V; Ozimy K
    Biochim Biophys Acta; 1979 Jul; 585(3):427-34. PubMed ID: 486541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment.
    Pinto PA; Dias AA; Fraga I; Marques G; Rodrigues MA; Colaço J; Sampaio A; Bezerra RM
    Bioresour Technol; 2012 May; 111():261-7. PubMed ID: 22406100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.
    Kameshwar AKS; Qin W
    Curr Genet; 2017 Oct; 63(5):877-894. PubMed ID: 28275822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of lignin degradation by glucose oxidase-negative mutants of Phanerochaete chrysosporium.
    Ramasamy K; Kelley RL; Reddy CA
    Biochem Biophys Res Commun; 1985 Aug; 131(1):436-41. PubMed ID: 4038305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.