These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7150260)

  • 1. Isolation of cell-surface glycopeptides from bovine cerebral cortex that inhibit cell growth and protein synthesis in normal but not in transformed cells.
    Kinders RJ; Johnson TC
    Biochem J; 1982 Sep; 206(3):527-34. PubMed ID: 7150260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cell-surface glycopeptides from mouse cerebral cortex that inhibit cell growth and protein synthesis.
    Kinders RJ; Milenkovic AG; Nordin P; Johnson TC
    Biochem J; 1980 Sep; 190(3):605-14. PubMed ID: 7470072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycopeptides prepared from mouse cerebrum inhibit protein synthesis and cell division in baby hamster kidney cells, but not in their polyoma virus-transformed analogs.
    Kinders RJ; Johnson TC
    Exp Cell Res; 1981 Nov; 136(1):31-41. PubMed ID: 6271564
    [No Abstract]   [Full Text] [Related]  

  • 4. Purification of a cell growth inhibitor from bovine cerebral cortex cells.
    Johnson TC; Kinders RJ; Sharifi BG
    Life Sci; 1985 Sep; 37(12):1117-23. PubMed ID: 4041001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of glycopeptides from control and virus-transformed baby hamster kidney fibroblasts.
    Blithe DL; Buck CA; Warren L
    Biochemistry; 1980 Jul; 19(14):3386-95. PubMed ID: 6250568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G2 cell cycle arrest induced by glycopeptides isolated from the bovine cerebral cortex.
    Charp PA; Kinders RJ; Johnson TC
    J Cell Biol; 1983 Aug; 97(2):311-6. PubMed ID: 6885902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of gangliosides in the interaction of a growth inhibitor with mouse LM cells.
    Bascom CC; Sharifi BG; Melkerson LJ; Rintoul DA; Johnson TC
    J Cell Physiol; 1985 Dec; 125(3):427-35. PubMed ID: 4066767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective protection of nonmalignant cells by a novel cell surface glycopeptide.
    McGee JE; Johnson B; Kinders R; Johnson TC
    Cancer Res; 1983 May; 43(5):2015-7. PubMed ID: 6831431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A monoclonal antibody to a unique cell surface growth regulatory glycopeptide.
    Kinders RJ; Sharifi BG; Johnson TC
    Biochem Biophys Res Commun; 1984 Oct; 124(1):133-40. PubMed ID: 6208899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of sulfation of glycosaminoglycans and glycopeptides from control and virus-transformed baby hamster kidney cells.
    Ohkubo Y; Fukui S; Mutoh S; Yamashina I
    Cancer Res; 1983 Jun; 43(6):2712-7. PubMed ID: 6850588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane glycopeptides from virus-transformed hamster fibroblasts and the normal counterpart.
    Glick MC
    Biochemistry; 1979 Jun; 18(12):2525-32. PubMed ID: 221010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial structure of a membrane glycopeptide from virus-transformed hamster cells.
    Santer UV; Glick MC
    Biochemistry; 1979 Jun; 18(12):2533-40. PubMed ID: 221011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis by lectin affinity chromatography of N-linked glycans of BHK cells and ricin-resistant mutants.
    Hughes RC; Mills G
    Biochem J; 1983 Jun; 211(3):575-87. PubMed ID: 6882361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of baby-hamster kidney (BHK) cells treated with Swainsonine, an inhibitor of glycoprotein processing. Comparison with ricin-resistant BHK-cell mutants.
    Foddy L; Feeney J; Hughes RC
    Biochem J; 1986 Feb; 233(3):697-706. PubMed ID: 3085652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a bovine cerebral cortex cell surface sialoglycopeptide that inhibits cell proliferation and metabolism.
    Sharifi BG; Johnson TC; Khurana VK; Bascom CC; Fleenor TJ; Chou HH
    J Neurochem; 1986 Feb; 46(2):461-9. PubMed ID: 2416876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation-specific cell killing by a cancer-associated galactosyltransferase acceptor and cellular binding.
    Podolsky DK; Isselbacher KJ
    Biochem J; 1982 Nov; 208(2):249-59. PubMed ID: 6818950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycopeptides from brain inhibit rates of polypeptide chain elongation.
    Kinders RJ; Hughes JV; Johnson TC
    J Biol Chem; 1980 Jul; 255(13):6368-72. PubMed ID: 6248520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concanavalin A-binding glycopeptides from rat brain glycoproteins.
    Hof HI; Susz JP; Javaid JI; Brunngraber EG
    Neurobiology; 1975 Dec; 5(6):347-54. PubMed ID: 1690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in surface glycopeptides after malignant transformation of rat liver cells and during the regression of hepatoma cells.
    Chaumeton B; Saunier B; Nato F; Goulut C; Bourrillon R
    J Cell Biochem; 1987 Aug; 34(4):269-81. PubMed ID: 3624323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface glycopeptide change triggered by contact between normal cells from rat liver and their simian virus 40-transformed cells from the same virus.
    Yokota M; Kato I; Onodera K; Kadosaka T; Aoi Y
    J Natl Cancer Inst; 1979 Feb; 62(2):305-12. PubMed ID: 216832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.