BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7150332)

  • 41. UDP-glucuronyltransferase activity toward harmol in human liver and human fetal liver cells in culture.
    Tan TM; Sit KH; Wong KP
    Anal Biochem; 1990 Feb; 185(1):44-50. PubMed ID: 2111643
    [TBL] [Abstract][Full Text] [Related]  

  • 42. UDP glucuronyltransferase and phenolsulfotransferase from rat liver in vivo and in vitro. Characterization of conjugation and biliary excretion of harmol in vivo and in the perfused liver.
    Mulder GJ; Hayen-Keulemans K; Sluiter NE
    Biochem Pharmacol; 1975 Jan; 24(1):103-7. PubMed ID: 804900
    [No Abstract]   [Full Text] [Related]  

  • 43. Sulfation and glucuronidation of acetaminophen by cultured hepatocytes reproducing in vivo sex-differences in conjugation on Matrigel and type 1 collagen.
    Kane RE; Tector J; Brems JJ; Li A; Kaminski D
    In Vitro Cell Dev Biol; 1991 Dec; 27A(12):953-60. PubMed ID: 1757400
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intestinal biotransformation of harmol and 1-naphthol in the rat. Further evidence of dose-dependent phase-II conjugation in situ.
    Goon D; Klaassen CD
    Drug Metab Dispos; 1991; 19(2):340-7. PubMed ID: 1676634
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of molybdate on the sulfation of harmol and alpha-naphthol.
    Boles JW; Klaassen CD
    Toxicology; 1998 May; 127(1-3):121-7. PubMed ID: 9699799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phenol sulphotransferase and uridine diphosphate glucuronyltransferase from rat liver in vivo and vitro. 2,6-Dichloro-4-nitrophenol as selective inhibitor of sulphation.
    Mulder GJ; Scholtens E
    Biochem J; 1977 Sep; 165(3):553-9. PubMed ID: 411489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of sulfation in the metabolic activation of N-hydroxy-4'-fluoro-4-acetylaminobiphenyl.
    van de Poll ML; Tijdens RB; Vondrácek P; Bruins AP; Meijer DK; Meerman JH
    Carcinogenesis; 1989 Dec; 10(12):2285-91. PubMed ID: 2480190
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Xenobiotic metabolism by isolated rat small intestinal cells.
    Grafström R; Moldéus P; Andersson B; Orrenius S
    Med Biol; 1979 Oct; 57(5):287-93. PubMed ID: 522515
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sex differences in sulfation and glucuronidation of phenol, 4-nitrophenol and N-hydroxy-2-acetylaminofluorene in the rat in vivo.
    Meerman JH; Nijland C; Mulder GJ
    Biochem Pharmacol; 1987 Aug; 36(16):2605-8. PubMed ID: 3606659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of 3-methylcholanthrene pretreatment on glucuronidation and sulfation in perfused rat liver.
    Hamada N; Gessner T
    Drug Metab Dispos; 1975; 3(5):407-16. PubMed ID: 241622
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential effects of phenobarbitone and 3-methylcholanthrene induction on the hepatic microsomal metabolism of the beta-carbolines harmine and harmol.
    Tweedie DJ; Burke MD
    Biochem Pharmacol; 1983 Feb; 32(4):653-63. PubMed ID: 6830628
    [No Abstract]   [Full Text] [Related]  

  • 52. Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveal both unique and shared positional preferences.
    Tang L; Zhou J; Yang CH; Xia BJ; Hu M; Liu ZQ
    J Agric Food Chem; 2012 Mar; 60(12):3223-33. PubMed ID: 22352802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Secondary bioenergetic hypoxia. Inhibition of sulfation and glucuronidation reactions in isolated hepatocytes at low O2 concentration.
    Aw TY; Jones DP
    J Biol Chem; 1982 Aug; 257(15):8997-9004. PubMed ID: 6284753
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolism of the beta-carbolines, harmine and harmol, by liver microsomes from phenobarbitone- or 3-methylcholanthrene-treated mice. Identification and quantitation of two novel harmine metabolites.
    Tweedie DJ; Burke MD
    Drug Metab Dispos; 1987; 15(1):74-81. PubMed ID: 2881762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of erythrocyte binding on elimination of harmol by the isolated perfused rat liver.
    Morgan DJ; Guttmann A; Watson RG; Ghabrial H; Elliott SL; Smallwood RA
    J Pharm Sci; 1996 Jan; 85(1):40-4. PubMed ID: 8926581
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of calcium ions on ethanol oxidation and drug glucuronidation in isolated hepatocytes.
    Andersson B; Jones DP; Orrenius S
    Biochem J; 1979 Dec; 184(3):709-11. PubMed ID: 540060
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Competition between two enzymes for substrate removal in liver: modulating effects due to substrate recruitment of hepatocyte activity.
    Morris ME; Pang KS
    J Pharmacokinet Biopharm; 1987 Oct; 15(5):473-96. PubMed ID: 3694493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolite kinetics: formation of acetaminophen from deuterated and nondeuterated phenacetin and acetanilide on acetaminophen sulfation kinetics in the perfused rat liver preparation.
    Pang KS; Waller L; Horning MG; Chan KK
    J Pharmacol Exp Ther; 1982 Jul; 222(1):14-9. PubMed ID: 7086695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carrier-mediated entry of 4-methylumbelliferyl sulfate: characterization by the multiple-indicator dilution technique in perfused rat liver.
    Chiba M; Schwab AJ; Goresky CA; Pang KS
    Hepatology; 1998 Jan; 27(1):134-46. PubMed ID: 9425929
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonlinear protein binding and enzyme heterogeneity: effects on hepatic drug removal.
    Xu X; Selick P; Pang KS
    J Pharmacokinet Biopharm; 1993 Feb; 21(1):43-74. PubMed ID: 8410683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.