BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7150332)

  • 61. Hepatic modeling of metabolite kinetics in sequential and parallel pathways: salicylamide and gentisamide metabolism in perfused rat liver.
    Xu X; Pang KS
    J Pharmacokinet Biopharm; 1989 Dec; 17(6):645-71. PubMed ID: 2635738
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modulation of sulfation and glucuronidation of 1-naphthol in isolated rat liver cells.
    Schwarz LR
    Arch Toxicol; 1980 Mar; 44(1-3):137-45. PubMed ID: 7387396
    [No Abstract]   [Full Text] [Related]  

  • 63. Endotoxin inhibits glucuronidation in the liver. An effect mediated by intercellular communication.
    Bánhegyi G; Mucha I; Garzó T; Antoni F; Mandl J
    Biochem Pharmacol; 1995 Jan; 49(1):65-8. PubMed ID: 7840784
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Study on effects of p-phenylbenzoic acid on change of sulfation and glucuronidation in rats.
    Nanbo A; Nanbo T
    Biol Pharm Bull; 2002 May; 25(5):686-9. PubMed ID: 12033518
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The kinetics of 4-nitrophenol conjugation by perfused livers and hepatic microsomes from streptozocin-induced diabetic rats.
    Morrison MH; Barber HE; Foschi PG; Hawksworth GM
    J Pharm Pharmacol; 1986 Mar; 38(3):188-94. PubMed ID: 2871153
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simultaneous determination of sulfation and glucuronidation of flavones in FVB mouse intestine in vitro and in vivo.
    Fan Y; Tang L; Zhou J; Feng Q; Xia B; Liu Z
    J Appl Toxicol; 2013 Apr; 33(4):273-80. PubMed ID: 22174032
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Competing pathways in drug metabolism. II. An identical, anterior enzymic distribution for 2- and 5-sulfoconjugation and a posterior localization for 5-glucuronidation of gentisamide in the rat liver.
    Morris ME; Yuen V; Pang KS
    J Pharmacokinet Biopharm; 1988 Dec; 16(6):633-56. PubMed ID: 3251033
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transport of 3,5,3'-triiodothyronine into the perfused rat liver and subsequent metabolism are inhibited by fasting.
    De Jong M; Docter R; Van Der Hoek HJ; Vos RA; Krenning EP; Hennemann G
    Endocrinology; 1992 Jul; 131(1):463-70. PubMed ID: 1612027
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of glutathione depletion and inhibition of glucuronidation and sulfation on 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) metabolism, PhIP-DNA adduct formation and unscheduled DNA synthesis in primary rat hepatocytes.
    Kaderlik KR; Mulder GJ; Shaddock JG; Casciano DA; Teitel CH; Kadlubar FF
    Carcinogenesis; 1994 Aug; 15(8):1711-6. PubMed ID: 8055653
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dose-dependent intestinal and hepatic glucuronidation and sulfatation of P-nitrophenol in the rat.
    Rafiei A; Bojcsev S; Fischer E
    Acta Physiol Hung; 1996; 84(3):333-5. PubMed ID: 9219629
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Glucuronidation and sulfation in subcellular fractions and in the isolated perfused rabbit lung: influence of ethanol.
    Yang CM; Carlson GP
    Pharmacology; 1991; 42(1):28-35. PubMed ID: 1905411
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Formation of reactive metabolites of 14C-naphthalene in isolated rat hepatocytes and the effect of decreased glucuronidation and sulfation.
    Hesse S; Mezger M; Schwarz LR
    Adv Exp Med Biol; 1981; 136 Pt A():739-44. PubMed ID: 7344489
    [No Abstract]   [Full Text] [Related]  

  • 73. Studies of glucuronidation and sulfation in tumor-bearing rats.
    Gessner T
    Biochem Pharmacol; 1974 Jul; 23(13):1809-16. PubMed ID: 4376399
    [No Abstract]   [Full Text] [Related]  

  • 74. Hepatic triiodothyronine sulfation and its regulation by growth hormone and triiodothyronine in rats.
    Gong DW; Murayama N; Yamazoe Y; Kato R
    J Biochem; 1992 Jul; 112(1):112-6. PubMed ID: 1429499
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sulfation and glucuronidation as competing pathways in the metabolism of hydroxamic acids: the role of N,O-sulfonation in chemical carcinogenesis of aromatic amines.
    Mulder GJ; Meerman JH
    Environ Health Perspect; 1983 Mar; 49():27-32. PubMed ID: 6339226
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pharmacokinetic evidence for the occurrence of extrahepatic conjugative metabolism of p-nitrophenol in rats.
    Machida M; Morita Y; Hayashi M; Awazu S
    Biochem Pharmacol; 1982 Mar; 31(5):787-91. PubMed ID: 7082347
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inhibition of UDP-glucuronosyltransferase activity by possible transition-state analogues in rat-liver microsomes.
    Noort D; Coughtrie MW; Burchell B; van der Marel GA; van Boom JH; van der Gen A; Mulder GJ
    Eur J Biochem; 1990 Mar; 188(2):309-12. PubMed ID: 2108023
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Glycogenolysis--and not gluconeogenesis--is the source of UDP-glucuronic acid for glucuronidation.
    Bánhegyi G; Garzó T; Antoni F; Mandl J
    Biochim Biophys Acta; 1988 Dec; 967(3):429-35. PubMed ID: 3196758
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Influence of the sulphation inhibitor, 2,6-dichloro-4-nitrophenol, on the production and conjugation, of 4-hydroxybiphenyl generated from 4-methoxybiphenyl by rat isolated hepatocytes.
    Fry JR; Paterson P
    Biochem Pharmacol; 1987 Sep; 36(18):3090-2. PubMed ID: 3632729
    [No Abstract]   [Full Text] [Related]  

  • 80. Metabolism of acetaminophen and phenacetin by isolated rat hepatocytes. A system in which the spatial organization inherent in the liver is disrupted.
    Pang KS; Kong P; Terrell JA; Billings RE
    Drug Metab Dispos; 1985; 13(1):42-50. PubMed ID: 2858375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.