BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 7150540)

  • 1. Fluidity of sarcoplasmic reticulum membranes investigated with dipyrenylpropane, an intramolecular excimer probe.
    Almeida LM; Vaz WL; Zachariasse KA; Madeira VM
    Biochemistry; 1982 Nov; 21(23):5972-7. PubMed ID: 7150540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluidity of bacterial membrane lipids monitored by intramolecular excimerization of 1.3-di(2-pyrenyl)propane.
    Jurado AS; Almeida LM; Madeira VM
    Biochem Biophys Res Commun; 1991 Apr; 176(1):356-63. PubMed ID: 2018528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of sarcoplasmic reticulum Ca2+-pump activity by membrane fluidity.
    Almeida LM; Vaz WL; Zachariasse KA; Madeira VM
    Biochemistry; 1984 Sep; 23(20):4714-20. PubMed ID: 6238620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of melittin on lipid-protein interactions in sarcoplasmic reticulum membranes.
    Mahaney JE; Kleinschmidt J; Marsh D; Thomas DD
    Biophys J; 1992 Dec; 63(6):1513-22. PubMed ID: 1336987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of short-chain primary alcohols on fluidity and activity of sarcoplasmic reticulum membranes.
    Almeida LM; Vaz WL; Stümpel J; Madeira VM
    Biochemistry; 1986 Aug; 25(17):4832-9. PubMed ID: 2945592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature on Ca-ATPase from sarcoplasmic reticulum membranes: ESR studies.
    Rubtsov AM; Sentjurc M; Schara M
    Gen Physiol Biophys; 1986 Oct; 5(5):551-61. PubMed ID: 3026890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism of Ca-ATPase activation by halothane in sarcoplasmic reticulum.
    Karon BS; Thomas DD
    Biochemistry; 1993 Jul; 32(29):7503-11. PubMed ID: 8393342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The increase in viscosity and peroxidation of sarcoplasmic reticulum membrane lipids in isadrine myocarditis.
    Lyzlova LV; Persianova VR; Antipenko AE; Lyzlova SN
    Biochem Int; 1987 Jun; 14(6):1079-86. PubMed ID: 2968798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli membrane fluidity as detected by excimerization of dipyrenylpropane: sensitivity to the bacterial fatty acid profile.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Arch Biochem Biophys; 1999 Aug; 368(1):156-60. PubMed ID: 10415123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of human erythrocyte ghost membranes with intramolecular excimer probes.
    Zachariasse KA; Vaz WL; Sotomayor C; Kühnle W
    Biochim Biophys Acta; 1982 Jun; 688(2):323-32. PubMed ID: 7104326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of fluorescent probes that form intramolecular excimers to monitor structural changes in model and biological membranes.
    Melnick RL; Haspel HC; Goldenberg M; Greenbaum LM; Weinstein S
    Biophys J; 1981 Jun; 34(3):499-515. PubMed ID: 7248471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between lipid fluidity and tryptic susceptibility of Ca2+-ATPase in sarcoplasmic reticulum membranes.
    Blazyk J; Wu CJ; Wu SC
    J Biol Chem; 1985 Apr; 260(8):4845-9. PubMed ID: 3157685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anticancer drug tamoxifen induces changes in the physical properties of model and native membranes.
    Custódio JB; Almeida LM; Madeira VM
    Biochim Biophys Acta; 1993 Aug; 1150(2):123-9. PubMed ID: 8347666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that lipid lateral phase separation induces functionally significant structural changes in the Ca+2ATPase of the sarcoplasmic reticulum.
    Asturias FJ; Pascolini D; Blasie JK
    Biophys J; 1990 Jul; 58(1):205-17. PubMed ID: 2143423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of membrane fluidity in submitochondrial particles of platelets and erythrocyte membranes from Mexican patients with Alzheimer disease by intramolecular excimer formation of 1,3 dipyrenylpropane.
    Ortiz GG; Pacheco-Moisés F; El Hafidi M; Jiménez-Delgado A; Macías-Islas MA; Rosales Corral SA; de la Rosa AC; Sánchez-González VJ; Arias-Merino ED; Velázquez-Brizuela IE
    Dis Markers; 2008; 24(3):151-6. PubMed ID: 18334736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of rotational dynamics of protein and lipid in sarcoplasmic reticulum membranes.
    Bigelow DJ; Squier TC; Thomas DD
    Biochemistry; 1986 Jan; 25(1):194-202. PubMed ID: 3006752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diphenylhexatriene and pyrene as tools for characterization of biological membranes.
    Boldyrev AA; Lopina OD; Prokopjeva VD
    Biochem Int; 1984 Jun; 8(6):851-9. PubMed ID: 6477633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid peroxidation in sarcoplasmic reticulum membranes: effect on functional and biophysical properties.
    Dinis TC; Almeida LM; Madeira VM
    Arch Biochem Biophys; 1993 Mar; 301(2):256-64. PubMed ID: 8384829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of membrane lipids of sarcoplasmic reticulum to probe the influence of bilayer fluidity on Ca2+-activated ATPase activity.
    Quinn PJ; Gomez R; Madden TD
    Biochem Soc Trans; 1980 Feb; 8(1):38-40. PubMed ID: 6445300
    [No Abstract]   [Full Text] [Related]  

  • 20. Physical studies on membrane lipids of Bacillus stearothermophilus temperature and calcium effects.
    Jurado AS; Pinheiro TJ; Madeira VM
    Arch Biochem Biophys; 1991 Aug; 289(1):167-79. PubMed ID: 1898060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.