These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7150672)

  • 1. [Role of vanadium in regulation of oxidation-reduction reactions in membranes].
    Kikvidze ZIa; Chikvashvili DV; Kometiani ZP
    Biokhimiia; 1982 Nov; 47(11):1814-7. PubMed ID: 7150672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Calcium and lipid peroxidation in the heart mitochondrial and microsomal membranes].
    Kagan VE; Savov VM; Didenko VV; Arkhipenko IuV; Meerson FZ
    Biull Eksp Biol Med; 1983 Apr; 95(4):46-8. PubMed ID: 6831018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadate-dependent oxidation of pyridine nucleotides in rat liver microsomal membranes.
    Coulombe RA; Briskin DP; Keller RJ; Thornley WR; Sharma RP
    Arch Biochem Biophys; 1987 Jun; 255(2):267-73. PubMed ID: 3647757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of incorporation and removal of cholesterol on the lipid bilayer viscosity and the rate of oxidative reactions in rat liver microsomal membranes].
    Borodin EA; Dobretsov GE; Karasevich EI; Karuzina II; Kariakin AV
    Biokhimiia; 1981 Jun; 46(6):1109-18. PubMed ID: 7260196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vanadate-stimulated oxidation of NAD(P)H by biomembranes is a superoxide-initiated free radical chain reaction.
    Liochev S; Fridovich I
    Arch Biochem Biophys; 1986 Oct; 250(1):139-45. PubMed ID: 3021060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Free radical reactions and energy transformation in microsome membranes. Arrhenius equation for the monooxygenase reaction].
    Dmitriev LF
    Biofizika; 2001; 46(1):60-8. PubMed ID: 11236564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous chemistry of the vanadium(III) (V(III)) and the V(III)-dipicolinate systems and a comparison of the effect of three oxidation states of vanadium compounds on diabetic hyperglycemia in rats.
    Buglyó P; Crans DC; Nagy EM; Lindo RL; Yang L; Smee JJ; Jin W; Chi LH; Godzala Iii ME; Willsky GR
    Inorg Chem; 2005 Jul; 44(15):5416-27. PubMed ID: 16022540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadate-stimulated NADH oxidation in microsomes.
    Rau M; Patole MS; Vijaya S; Kurup CK; Ramasarma T
    Mol Cell Biochem; 1987 Jun; 75(2):151-9. PubMed ID: 3650694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vanadate-dependent NADH oxidation in microsomal membranes of sugar beet.
    Briskin DP; Thornley WR; Poole RJ
    Arch Biochem Biophys; 1985 Jan; 236(1):228-37. PubMed ID: 3843927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of vanadium on tissue respiration in organs and on cholesterol metabolism in guinea pigs with experimental atheroclerosis.
    Ivanov VN
    Cor Vasa; 1975; 17(1):75-80. PubMed ID: 1149461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of receptor-bearing membranes from rat brain microsomes after digitonin treatment [proceedings].
    Laduron P; Janssen PF
    Arch Int Physiol Biochim; 1979 May; 87(2):419-20. PubMed ID: 92963
    [No Abstract]   [Full Text] [Related]  

  • 12. Vanadate-stimulated NADH oxidation in plasma membrane.
    Ramasarma T; MacKellar WC; Crane FL
    Biochim Biophys Acta; 1981 Aug; 646(1):88-98. PubMed ID: 6912071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of regucalcin as an activator of sarcoplasmic reticulum Ca2+-ATPase activity in rat heart muscle.
    Yamaguchi M; Nakajima R
    J Cell Biochem; 2002; 86(1):184-93. PubMed ID: 12112029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes.
    Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T
    Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of the phenolic antioxidant katavidan on autoxidation of microsomes during exposure to visible light].
    Polianskiĭ NB; Muranov KO
    Biull Eksp Biol Med; 1994 Oct; 118(10):393-4. PubMed ID: 7865817
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidation of dimethylselenide to dimethylselenoxide by microsomes from rat liver and lung and by flavin-containing monooxygenase from pig liver.
    Goeger DE; Ganther HE
    Arch Biochem Biophys; 1994 May; 310(2):448-51. PubMed ID: 8179331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membranes of retinal microsomes: a new protein of the microsomal monooxigenase system.
    Etingof RN; Shushakova ND
    Membr Cell Biol; 1997; 11(2):175-86. PubMed ID: 9354397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of n-alkanols on the membrane fluidity of chick embryo heart microsomes.
    Zavoico GB; Kutchai H
    Biochim Biophys Acta; 1980 Aug; 600(2):263-9. PubMed ID: 7407114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of key enzymes in microsomal and mitochondrial membranes depends on the redox reactions involving lipid radicals.
    Dmitriev LF
    Membr Cell Biol; 2001 Jul; 14(5):649-62. PubMed ID: 11699868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.