These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7150717)

  • 1. New device for determination of cell electrophoretic mobility using doppler velocimetry.
    Malher E; Martin D; Duvivier C; Volochine B; Stoltz JF
    Biorheology; 1982; 19(5):647-54. PubMed ID: 7150717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophoretic light scattering.
    Takagi T
    Electrophoresis; 1993 Dec; 14(12):1255-6. PubMed ID: 8137785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic behavior of inside-out vesicles from human red cell membranes.
    Yen WS; Mercer RW; Ware BR; Dunham PB
    Biochim Biophys Acta; 1982 Jul; 689(2):290-8. PubMed ID: 7115710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of inherent particle properties by dynamic light scattering: introducing electrorotational light scattering.
    Prüger B; Eppmann P; Donath E; Gimsa J
    Biophys J; 1997 Mar; 72(3):1414-24. PubMed ID: 9138587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electrokinetic behavior of red blood cells from a patient with Tn syndrome by Doppler electrophoretic light scattering analysis.
    Omi T; Kajii E; Ikemoto S
    Tohoku J Exp Med; 1994 Dec; 174(4):369-77. PubMed ID: 7732519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes.
    Pasquale L; Winiski A; Oliva C; Vaio G; McLaughlin S
    J Gen Physiol; 1986 Dec; 88(6):697-718. PubMed ID: 3794637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface charge of purple membranes measured by laser Doppler velocimetry.
    Packer L; Arrio B; Johannin G; Volfin P
    Biochem Biophys Res Commun; 1984 Jul; 122(1):252-8. PubMed ID: 6743330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretic mobility of the fetal red blood cell.
    Kosztolányi G; Jobst K
    Biol Neonate; 1975; 27(1-2):125-8. PubMed ID: 1148347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of lipoxygenase metabolites of arachidonic acid on the surface charge of the erythrocyte membrane].
    Sashenkov SL; Khshivo AL; Egorova NV; Nekrasov AS; Lankin VZ
    Fiziol Zh (1978); 1990; 36(3):83-6. PubMed ID: 2118455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge distribution within cell surface coats of single and interacting surfaces--a minimum free electrostatic energy approach. Conclusions for electrophoretic mobility measurements.
    Donath E; Voigt A
    J Theor Biol; 1983 Apr; 101(4):569-84. PubMed ID: 6876833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-elastic light scattering studies of membrane motion in single red blood cells.
    Tishler RB; Carlson FD
    Biophys J; 1987 Jun; 51(6):993-7. PubMed ID: 3607216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for the determination of electrical potentials across cellular membranes. II. Membrane potentials of Acholeplasmas, Mycoplasmas, Streptococci and erythrocytes.
    Schummer U; Schiefer HG; Gerhardt U
    Biochim Biophys Acta; 1980 Aug; 600(3):998-106. PubMed ID: 6773575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Mobility of Breast Cancer Cells and Normal Breast Epithelial Cells Under DC Electrophoresis and Electroosmosis.
    Dutta D; Russell C; Kim J; Chandra S
    Anticancer Res; 2018 Oct; 38(10):5733-5738. PubMed ID: 30275194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Laser Doppler velocimetry applied to the measurement of electrophoretic mobility of suspended cells: the electrophorometer].
    Stoltz JF; Malher E; Duvivier C
    Agressologie; 1984 Sep; 25(8):937-9. PubMed ID: 6239557
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrokinetic and hydrodynamic properties of sarcoplasmic reticulum vesicles: a study by laser Doppler electrophoresis and quasi-elastic light scattering.
    Arrio B; Johannin G; Carrette A; Chevallier J; Brèthes D
    Arch Biochem Biophys; 1984 Jan; 228(1):220-9. PubMed ID: 6696432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cellular electrophoresis, its theoretical and practical significance (a review of the literature and the authors' own data)].
    Kozinets GI; Shishkov VP; Borzova LV; Makarov AA; Agranenko LV
    Probl Gematol Pereliv Krovi; 1979 Feb; 24(2):40-4. PubMed ID: 370816
    [No Abstract]   [Full Text] [Related]  

  • 17. [Interpretation of the mechanism of changes in electrophoretic motility after exposure to physical fields in a solid liquid mosaic model of the erythrocyte].
    Sigal VL; Osadchiĭ PV
    Biofizika; 1984; 29(6):974-6. PubMed ID: 6518174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change in electrophoretic mobility of human erythrocyte as the result of membrane shape change in vitro.
    Sato T; Fujii T; Kojima K
    Physiol Chem Phys; 1975; 7(6):523-8. PubMed ID: 1223919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation inactivation analysis of virus-mediated fusion reactions.
    Lenard J
    Methods Enzymol; 1993; 220():343-50. PubMed ID: 8394496
    [No Abstract]   [Full Text] [Related]  

  • 20. Electrokinetic properties of synaptic vesicles and synaptosomal membranes.
    Siegel DP; Ware BR
    Biophys J; 1980 Apr; 30(1):159-72. PubMed ID: 7260263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.