These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 7150952)
21. Choline uptake by the neuroblastoma x glioma hybrid, NG108-15. McGee R J Neurochem; 1980 Oct; 35(4):829-37. PubMed ID: 6256499 [TBL] [Abstract][Full Text] [Related]
22. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes. Duhm J; Becker BF J Membr Biol; 1979 Dec; 51(3-4):263-86. PubMed ID: 43898 [TBL] [Abstract][Full Text] [Related]
23. Studies on the lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+-dependent Li+ counter-transport system of human erythrocytes. Duhm J; Eisenried F; Becker BF; Greil W Pflugers Arch; 1976 Jul; 364(2):147-55. PubMed ID: 986623 [TBL] [Abstract][Full Text] [Related]
24. The influence of calcium on sodium efflux in squid axons. Baker PF; Blaustein MP; Hodgkin AL; Steinhardt RA J Physiol; 1969 Feb; 200(2):431-58. PubMed ID: 5764407 [TBL] [Abstract][Full Text] [Related]
25. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Lichtshtein D; Kaback HR; Blume AJ Proc Natl Acad Sci U S A; 1979 Feb; 76(2):650-4. PubMed ID: 284390 [TBL] [Abstract][Full Text] [Related]
26. Kinetics and stoichiometry of Na-dependent Li transport in human red blood cells. Sarkadi B; Alifimoff JK; Gunn RB; Tosteson DC J Gen Physiol; 1978 Aug; 72(2):249-65. PubMed ID: 690598 [TBL] [Abstract][Full Text] [Related]
27. Studies on the lithium transport across the red cell membrane. III. Factors contributing to the intraindividual variability of the in vitro Li+ distribution across the human red cell membrane. Duhm J; Becker BF Pflugers Arch; 1977 Apr; 368(3):203-8. PubMed ID: 559291 [TBL] [Abstract][Full Text] [Related]
28. Uptake and energy-dependent extrusion of calcium in neural cells in culture. Kürzinger K; Stadtkus C; Hamprecht B Eur J Biochem; 1980 Feb; 103(3):597-611. PubMed ID: 6444579 [TBL] [Abstract][Full Text] [Related]
29. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. Blaustein MP J Physiol; 1975 Jun; 247(3):617-55. PubMed ID: 238033 [TBL] [Abstract][Full Text] [Related]
30. Abnormal sodium transport in synaptosomes from brain of uremic rats. Fraser CL; Sarnacki P; Arieff AI J Clin Invest; 1985 Jun; 75(6):2014-23. PubMed ID: 4008650 [TBL] [Abstract][Full Text] [Related]
31. Abnormal lithium and sodium transport in erythrocytes of a manic patient and some members of his family. Pandey GN; Ostrow DG; Haas M; Dorus E; Casper RC; Davis JM; Tosteson DC Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3607-11. PubMed ID: 269417 [TBL] [Abstract][Full Text] [Related]
32. Movements of labelled sodium ions in isolated rat superior cervical ganglia. Brown DA; Scholfield CN J Physiol; 1974 Oct; 242(2):321-51. PubMed ID: 4455816 [TBL] [Abstract][Full Text] [Related]
33. Analysis of neurotoxin and mitogen-stimulated sodium transport in human fibroblasts. Davis MH; Pato CN; Gruenstein E J Biol Chem; 1982 Apr; 257(8):4356-61. PubMed ID: 6279633 [TBL] [Abstract][Full Text] [Related]
34. Lithium efflux through the Na/K pump in human erythrocytes. Dunham PB; Senyk O Proc Natl Acad Sci U S A; 1977 Jul; 74(7):3099-103. PubMed ID: 268658 [TBL] [Abstract][Full Text] [Related]
35. Properties of the interaction of the sodium channel with permeant monovalent cations. Jacques Y; Romey G; Fosset M; Lazdunski M Eur J Biochem; 1980 May; 106(1):71-83. PubMed ID: 6281000 [TBL] [Abstract][Full Text] [Related]
36. Interaction of external alkali metal ions with the Na-K pump of human erythrocytes: a comparison of their effects on activation of the pump and on the rate of ouabain binding. Hobbs AS; Dunham PB J Gen Physiol; 1978 Sep; 72(3):381-402. PubMed ID: 702113 [TBL] [Abstract][Full Text] [Related]
37. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride. Maizels M J Physiol; 1968 Apr; 195(3):657-79. PubMed ID: 5649640 [TBL] [Abstract][Full Text] [Related]
38. Intracellular sodium concentration and transport in red cells in essential hypertension, hyperthyroidism, pregnancy and hypokalemia. Gless KH; Sütterlin U; Schaz K; Schütz V; Hunstein W Clin Physiol Biochem; 1986; 4(3):199-209. PubMed ID: 3011343 [TBL] [Abstract][Full Text] [Related]
39. Lithium entry into neural cells via sodium channels: a morphometric approach. Janka Z; Jones DG Neuroscience; 1982; 7(11):2849-57. PubMed ID: 6296722 [TBL] [Abstract][Full Text] [Related]
40. A new capillary tube system for measuring the uptake and release of materials from cultured cells. McGee R; Smith C; Christian C; Mata M; Nelson P; Nirenberg M Anal Biochem; 1980 Jan; 101(2):320-6. PubMed ID: 7362028 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]