These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7150956)

  • 1. The role of acetylcholine in the function of the nucleus raphe magnus and in the interaction of this nucleus with the periaqueductal gray.
    Behbehani MM
    Brain Res; 1982 Dec; 252(2):299-307. PubMed ID: 7150956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray.
    Jiang M; Behbehani MM
    Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between central gray and nucleus raphe magnus: role of norepinephrine.
    Behbehani MM; Pomeroy SL; Mack CE
    Brain Res Bull; 1981 May; 6(5):361-4. PubMed ID: 6265039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of biogenic amines on raphe-spinal tract cells.
    Willcockson WS; Gerhart KD; Cargill CL; Willis WD
    J Pharmacol Exp Ther; 1983 Jun; 225(3):637-45. PubMed ID: 6864525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons.
    Dostrovsky JO; Shah Y; Gray BG
    J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus.
    Reichling DB; Basbaum AI
    J Comp Neurol; 1990 Dec; 302(2):370-7. PubMed ID: 2289975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of nucleus raphe magnus neurons to electrical stimulation of nucleus cuneiformis: role of acetylcholine.
    Behbehani MM; Zemlan FP
    Brain Res; 1986 Mar; 369(1-2):110-8. PubMed ID: 3697735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat.
    Sandkühler J; Fu QG; Zimmermann M
    J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of periaqueductal gray and raphe magnus stimulation on the responses of spinocervical and other ascending projection neurons to non-noxious inputs.
    Kajander KC; Ebner TJ; Bloedel JR
    Brain Res; 1984 Jan; 291(1):29-37. PubMed ID: 6697183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia.
    Behbehani MM; Fields HL
    Brain Res; 1979 Jul; 170(1):85-93. PubMed ID: 223721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain.
    Abols IA; Basbaum AI
    J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons.
    Gray BG; Dostrovsky JO
    J Neurophysiol; 1983 Apr; 49(4):932-47. PubMed ID: 6854362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressive influences from periaqueductal gray and nucleus raphe magnus on respiration and related reflex activities and on solitary tract neurons, and effect of naloxone.
    Sessle BJ; Ball GJ; Lucier GE
    Brain Res; 1981 Jul; 216(1):145-61. PubMed ID: 6266582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological characterization of the projection from the nucleus raphe magnus to the lateral reticular nucleus: possible role of an excitatory amino acid in synaptic activation.
    Murphy AZ; Behbehani MM
    Brain Res; 1993 Mar; 606(1):68-78. PubMed ID: 8462005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of transmission and modulation of renal pain in cats; effect of nucleus raphe magnus stimulation on renal pain.
    Baik EJ; Jeong Y; Nam TS; Kim WK; Paik KS
    Yonsei Med J; 1995 Sep; 36(4):348-60. PubMed ID: 7483678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of focal stimulation in nucleus raphe magnus and periaqueductal gray on intracellularly recorded neurons in spinal laminae I and II.
    Light AR; Casale EJ; Menétrey DM
    J Neurophysiol; 1986 Sep; 56(3):555-71. PubMed ID: 3783212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projections from the periaqueductal gray matter to the B3 cellular area (nucleus raphe magnus and nucleus reticularis paragigantocellularis) as revealed by the retrograde transport of horseradish peroxidase in the rat.
    Fardin V; Oliveras JL; Besson JM
    J Comp Neurol; 1984 Mar; 223(4):483-500. PubMed ID: 6325508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autoradiographic and electrophysiological evidence for excitatory amino acid transmission in the periaqueductal gray projection to nucleus raphe magnus in the rat.
    Wiklund L; Behzadi G; Kalén P; Headley PM; Nicolopoulos LS; Parsons CG; West DC
    Neurosci Lett; 1988 Nov; 93(2-3):158-63. PubMed ID: 2907372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscerosomatic neurons in the lower thoracic spinal cord of the cat: excitations and inhibitions evoked by splanchnic and somatic nerve volleys and by stimulation of brain stem nuclei.
    Tattersall JE; Cervero F; Lumb BM
    J Neurophysiol; 1986 Nov; 56(5):1411-23. PubMed ID: 3794775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.